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Chapter 1. Introduction
This specification describes the objectives and functionality of the Jakarta Messaging.

Jakarta Messaging provides a common way for Java programs to create, send, receive and read an
enterprise messaging system’s messages.

1.1. Overview of Jakarta Messaging
Enterprise messaging products (or as they are sometimes called, message-oriented middleware
products) are an essential component for integrating intra-company operations. They allow separate
business components to be combined into a reliable, yet flexible, system.

Jakarta Messaging was initially developed to provide a standard Java API for the established messaging
products that already existed. Since then many more messaging products have been developed.

Jakarta Messaging provides a common way for both Java client applications and Java middle-tier
services to use these messaging products. It defines some messaging semantics and a corresponding set
of Java interfaces.

Since messaging is a peer-to-peer technology, users of Jakarta Messaging are referred to generically as
clients. A Jakarta Messaging application is made up of a set of application defined messages and a set of
clients that exchange them.

Messaging products that implement Jakarta Messaging do so by supplying a provider that implements
the Jakarta Messaging interfaces. Messaging products may support clients which use programming
languages other than Java. Although such support is beyond the scope of Jakarta Messaging, the design
of Jakarta Messaging has always accommodated the need for messaging products to support languages
other than Java.

1.1.1. What is messaging?

The term messaging is quite broadly defined in computing. It is used for describing various operating
system concepts; it is used to describe email and fax systems; and here, it is used to describe
asynchronous communication between enterprise applications.

Messages, as described here, are asynchronous requests, reports or events that are consumed by
enterprise applications, not humans. They contain vital information needed to coordinate these
systems. They contain precisely formatted data that describe specific business actions. Through the
exchange of these messages each application tracks the progress of the enterprise.

1.1.2. The objectives of Jakarta Messaging

The objectives of Jakarta Messaging are

1.1. Overview of Jakarta Messaging

Final Jakarta Messaging    3



• to provide Java applications with the messaging functionality needed to implement sophisticated
enterprise applications

• to define a common set of messaging concepts and facilities

• to minimize the concepts a Java language programmer must learn to use enterprise messaging
products

• to maximize the portability of Java messaging applications between different messaging products

1.1.3. Jakarta Messaging domains

Jakarta Messaging supports the two major styles of messaging provided by enterprise messaging
products:

• Point-to-point (PTP) messaging allows a client to send a message to another client via an
intermediate abstraction called a queue. The client that sends the message sends it to a specific
queue. The client that receives the message extracts it from that queue.

• Publish and subscribe (pub/sub) messaging allows a client to send a message to multiple clients via
an intermediate abstraction called a topic. The client that sends the message publishes it to a
specific topic. The message is then delivered to all the clients that are subscribed to that topic.

1.1.4. What Jakarta Messaging does not include

Jakarta Messaging does not address the following functionality:

• Load balancing/fault tolerance - Many products provide support for multiple, cooperating clients
implementing a critical service. The Jakarta Messaging API does not specify how such clients
cooperate to appear to be a single, unified service.

• Error/advisory notification - Most messaging products define system messages that provide
asynchronous notification of problems or system events to clients. Jakarta Messaging does not
attempt to standardize these messages. By following the guidelines defined by Jakarta Messaging,
clients can avoid using these messages and thus prevent the portability problems their use
introduces.

• Administration - Jakarta Messaging does not define an API for administering messaging products.

• Security - Jakarta Messaging does not specify an API for controlling the privacy and integrity of
messages. It also does not specify how digital signatures or keys are distributed to clients. Security
is considered to be a Jakarta Messaging provider-specific feature that is configured by an
administrator rather than controlled via the Jakarta Messaging API by clients.

• Wire protocol - Jakarta Messaging does not define a wire protocol for messaging.

• Message type repository - Jakarta Messaging does not define a repository for storing message type
definitions and it does not define a language for creating message type definitions.

1.1. Overview of Jakarta Messaging
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1.1.5. Java SE and Jakarta EE support

The Jakarta Messaging API is designed to be suitable for use by both Java client applications using the
Java™ Platform, Standard Edition (Java SE), and Java middle-tier services using Jakarta EE.

A Jakarta Messaging provider must support its use by Java client applications using Java SE. It is
optional whether a given Jakarta Messaging provider supports its use by middle-tier applications using
Jakarta EE.

The Jakarta EE Specification requires a full Jakarta EE platform implementation to include a messaging
provider which supports the Jakarta Messaging API in both Java SE and Jakarta EE applications.

Jakarta EE makes a number of additional features available to messaging applications beyond those
defined in the Jakarta Messaging specification itself, most notably message-driven beans (MDBs) and
Jakarta transactions. Jakarta EE also imposes a number of restrictions on the use of the Jakarta
Messaging API.

For more information on the use of Jakarta Messaging by Jakarta EE applications, see chapter 12 “Use
of Jakarta Messaging API in Jakarta EE applications”.

1.2. What is new in Jakarta Messaging 2.0?
A full list of the new features, changes and clarifications introduced in Jakarta Messaging 2.0 is given
in section A.1 “Version 2.0” of the “Change history” chapter. Here is a summary:

The Jakarta Messaging 2.0 specification now requires Jakarta Messaging providers to implement both
PTP and pub/sub.

The following new messaging features have been added in Jakarta Messaging 2.0:

• Delivery delay: a message producer can now specify that a message must not be delivered until
after a specified time interval.

• New send methods have been added to allow an application to send messages asynchronously.

• Jakarta Messaging providers must now set the JMSXDeliveryCount message property.

The following change has been made to aid scalability:

• Applications which create a durable or non-durable topic subscription may now designate them to
be “shared”. A shared subscription may have multiple consumers.

Several changes have been made to the Jakarta Messaging API to make it simpler and easier to use:

• Connection, Session and other objects with a close() method now implement the
java.lang.AutoCloseable interface to allow them to be used in a Java SE 7 try-with-resources
statement.

• A new “simplified API” has been added which offers a simpler alternative to the previous API,

1.2. What is new in Jakarta Messaging 2.0?
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especially in Jakarta EE applications.

• New methods have been added to create a session without the need to supply redundant
arguments.

• Although setting client ID remains mandatory when creating an unshared durable subscription, it
is optional when creating a shared durable subscription.

• A new method getBody has been added to allow an application to extract the body directly from a
Message without the need to cast it first to an appropriate subtype.

A new chapter has been added which describes some additional restrictions and behaviour which
apply when using the Jakarta Messaging API in the Jakarta EE web container or the Enterprise
Beans container. This information was previously only available in the Jakarta Enterprise Beans
and Jakarta EE platform specifications.

A new chapter has been added which adds a new recommendation for a Jakarta Messaging
provider to include a resource adapter, and which defines a number of activation configuration
properties.

New methods have been added to Session which return a MessageConsumer on a durable topic
subscription. Applications could previously only obtain a domain-specific TopicSubscriber, even
though its use was discouraged.

The specification has been clarified in various places.

1.2. What is new in Jakarta Messaging 2.0?
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Chapter 2. Architecture

2.1. Overview
This chapter describes the environment of message based applications and the role Jakarta Messaging
plays in this environment.

2.2. What is a Jakarta Messaging application?
A Jakarta Messaging application is composed of the following parts:

• Jakarta Messaging Clients - These are the Java language programs that send and receive messages.

• Non-Jakarta Messaging Clients - These are clients that use a message system’s native client API
instead of Jakarta Messaging. If the application predated the availability of Jakarta Messaging it is
likely that it will include both Jakarta Messaging and non-Jakarta Messaging clients.

• Messages - Each application defines a set of messages that are used to communicate information
between its clients.

• Jakarta Messaging Provider - This is a messaging system that implements Jakarta Messaging in
addition to the other administrative and control functionality required of a full featured messaging
product.

• Administered Objects - Administered objects are preconfigured Jakarta Messaging objects created
by an administrator for the use of clients.

2.3. Administration
It is expected that each Jakarta Messaging provider will differ significantly in its underlying messaging
technology. It is also expected there will be major differences in how a provider’s system is installed
and administered.

If Jakarta Messaging clients are to be portable, they must be isolated from these proprietary aspects of
a provider. This is done by defining Jakarta Messaging administered objects that are created and
customized by a provider’s administrator and later used by clients. The client uses them through
Jakarta Messaging interfaces that are portable. The administrator creates them using provider-specific
facilities.

There are two types of Jakarta Messaging administered objects:

• ConnectionFactory - This is the object a client uses to create a connection with a provider.

• Destination - This is the object a client uses to specify the destination of messages it is sending and
the source of messages it receives.

Administered objects are placed in a JNDI namespace by an administrator. A Jakarta Messaging client

2.1. Overview
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typically notes in its documentation the Jakarta Messaging administered objects it requires and how
the JNDI names of these objects should be provided to it. Figure 2‑1 illustrates how Jakarta Messaging
administration ordinarily works.

Figure 2‑1 Jakarta Messaging Administration

2.4. Two messaging styles
A Jakarta Messaging application can use either the point-to-point (PTP) or the publish-and-subscribe
(pub/sub) style of messaging, which are described in more detail later in this specification. An
application can also combine both styles of messaging in one application. These two styles of
messaging are often referred to as messaging domains. Jakarta Messaging provides these two
messaging domains because they represent two common models for messaging.

When using the Jakarta Messaging API, a developer can use interfaces and methods that support both
models of messaging. When using these interfaces, the behavior of the messaging system may be
somewhat different, because the two messaging domains have different semantics. These semantic
differences are described in chapter 4 “Messaging domains”.

2.5. Jakarta Messaging APIs
For historical reasons Jakarta Messaging offers four alternative sets of interfaces for sending and
receiving messages.

JMS 1.0 defined two domain-specific APIs, one for point-to-point messaging (queues) and one for
pub/sub (topics). Although these remain part of Jakarta Messaging for reasons of backwards
compatibility they should be considered to be completely superseded by the later APIs.

JMS 1.1 introduced a new unified API which offered a single set of interfaces that could be used for
both point-to-point and pub/sub messaging. This is referred to here as the classic API.

JMS 2.0 introduces a simplified API which offers all the features of the classic API but which requires
fewer interfaces and is simpler to use.

2.4. Two messaging styles
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Each API offers a different set of interfaces for connecting to a Jakarta Messaging provider and for
sending and receiving messages. However they all share a common set of interfaces for representing
messages and message destinations and to provide various utility features.

All interfaces are in the jakarta.jms package.

2.6. Interfaces common to multiple APIs
The main interfaces common to multiple APIs are as follows:

• Message, BytesMessage, MapMessage, ObjectMessage, StreamMessage and TextMessage – a
message sent to or received from a Jakarta Messaging provider.

• Queue – an administered object that encapsulates the identity of a message destination for point-to-
point messaging

• Topic – an administered object that encapsulates the identity of a message destination for pub/sub
messaging.

• Destination - the common supertype of Queue and Topic

2.7. Classic API interfaces
The main interfaces provided by the classic API are as follows:

• ConnectionFactory - an administered object used by a client to create a Connection. This interface is
also used by the simplified API.

• Connection - an active connection to a Jakarta Messaging provider

• Session - a single-threaded context for sending and receiving messages

• MessageProducer - an object created by a Session that is used for sending messages to a queue or
topic

• MessageConsumer - an object created by a Session that is used for receiving messages sent to a
queue or topic

Figure 2‑2 Overview of classic API

2.6. Interfaces common to multiple APIs
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2.8. Simplified API interfaces
The simplified API provides the same messaging functionality as the classic API but requires fewer
interfaces and is simpler to use.

The main interfaces provided by the simplified API are as follows:

• ConnectionFactory - an administered object used by a client to create a Connection. This interface is
also used by the classic API.

• JMSContext - an active connection to a Jakarta Messaging provider and a single-threaded context
for sending and receiving messages

• JMSProducer - an object created by a JMSContext that is used for sending messages to a queue or
topic

• JMSConsumer - an object created by a JMSContext that is used for receiving messages sent to a
queue or topic

Figure 2‑3 Overview of simplified API

2.8. Simplified API interfaces
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In the simplified API a single JMSContext object encompasses the behaviour which in the classic API is
provided by two separate objects, a Connection and a Session. Although this specification refers to the
JMSContext as having an underlying “connection” and “session”, the simplified API does not use the
Connection and Session interfaces.

2.8.1. Goals of the simplified API

The simplified API has the following goals:

• To reduce the number of objects needed to send and receive messages, and in particular to
combine the Jakarta Messaging Connection, Session objects into a single object.

• To maintain a consistent style with the existing API where possible so that users of the old API feel
it to be an evolution which they can learn quickly. In particular the simplified API will continue to
use the concepts of connection and session even though it doesn’t require the use of Connection or
Session objects.

• To be capable of use in both Jakarta EE and Java SE applications.

• To allow resource injection to be exploited in those environments which support it.

• To provide the option to send and receive the message body directly without the need to use
jakarta.jms.Message objects.

• To remove where possible the need to catch JMSException on method calls

• To be functionally as complete as the classic API, so that users of the simplified API will not have
the need to switch back to the classic API in order to perform an operation that is unavailable in
the simplified API.

• To be an alternative to, but not a replacement for, the classic API. The classic API remains and is not
deprecated. Developers who are familiar with the classic API, or who prefer it, may continue to use

2.8. Simplified API interfaces
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the classic API.

2.8.2. Key features of the simplified API

The main object in the simplified API is jakarta.jms.JMSContext. This combines in a single object the
functionality of several separate objects from the classic API. In particular it combines the
functionality of a Connection and a Session in a single object.

Although the JMSContext does not expose constituent Connection and Session objects to applications,
the concepts of connection and session remain important. A Connection represents a physical link to
the Jakarta Messaging server, a Session represents a single-threaded context for sending and receiving
messages, and a JMSContext represents both.

Applications that send messages will use the JMSContext method createProducer to create a
jakarta.jms.JMSProducer object. This provides an API to send messages. Although it provides similar
functionality to an anonymous MessageProducer (one with no destination specified) it provides a more
convenient API for configuring delivery options, message properties and message headers.

Applications that consume messages will use one of several methods on JMSContext to create a
jakarta.jms.JMSConsumer object. This provides a similar API to a MessageConsumer for consuming
messages from a particular queue or topic. Messages may be consumed either synchronously or
asynchronously, except in a Jakarta EE web containers or Enterprise Beans container where messages
may be consumed only synchronously.

Applications running in the Jakarta EE web containers and Enterprise Beans containers must not
create more than one active session on a connection (see Section 12.2 “Restrictions on the use of
Jakarta Messaging API in the Jakarta EE web container or Enterprise Beans container”. Since a
JMSContext contains a single connection and a single session it is ideally suited for use by such
applications.

Applications running in a Java SE environment or in the Jakarta EE application client container are
permitted to create multiple active sessions on the same connection. This allows the same physical
connection to be used in multiple threads simultaneously. Such applications which require multiple
sessions to be created on the same connection should use the factory methods on the
ConnectionFactory interface to create the first JMSContext and then use the createContext method on
JMSContext to create additional JMSContext objects that use the same connection:

To simplify application code, methods on JMSContext throw unchecked exceptions rather than checked
exceptions.

2.9. Legacy domain-specific API interfaces
Although the domain-specific API remains part of Jakarta Messaging for reasons of backwards
compatibility it should be considered to be completely superseded by the classic and simplified APIs.

The main interfaces provided by the domain-specific API for point-to-point messaging are as follows:

2.9. Legacy domain-specific API interfaces
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• QueueConnectionFactory - an administered object used by a client to create a QueueConnection.

• QueueConnection - an active connection to a Jakarta Messaging provider

• QueueSession - a single-threaded context for sending and receiving messages

• QueueSender - an object created by a QueueSession that is used for sending messages to a queue

• QueueReceiver - an object created by a QueueSession that is used for receiving messages sent to a
queue

Figure 2‑4 Overview of legacy point-to-point-specific API

The main interfaces provided by the domain-specific API for pub/sub messaging are as follows:

• TopicConnectionFactory - an administered object used by a client to create a TopicConnection.

• TopicConnection - an active connection to a Jakarta Messaging provider

• TopicSession - a single-threaded context for sending and receiving messages

• TopicPublisher - an object created by a TopicSession that is used for sending messages to a topic

• TopicSubscriber - an object created by a TopicSession that is used for receiving messages sent to a
topic

Figure 2‑5 Overview of legacy pub/sub-specific API

2.9. Legacy domain-specific API interfaces
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2.10. Relationship between interfaces
The following table summarises the different interfaces used by the four APIs and how they
correspond to one another:

Table 2‑1 Relationship between interfaces used by each API

Classic API Simplified API Domain-specific API
for point-to-point
messaging

Domain-specific API
for pub/sub messaging

Connection Factory Connection Factory QueueConnection
Factory

TopicConnection
Factory

Connection JMSContext QueueConnection TopicConnection

Session QueueSession TopicSession

MessageProducer JMSProducer QueueSender QueueReceiver

2.10. Relationship between interfaces
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2.11. Terminology for sending and receiving messages
The term consume is used in this document to mean the receipt of a message by a Jakarta Messaging
client; that is, a Jakarta Messaging provider has received a message and has given it to its client. Since
Jakarta Messaging supports both synchronous and asynchronous receipt of messages, the term
consume is used when there is no need to make a distinction between them.

The term produce is used as the most general term for sending a message. It means giving a message to
a Jakarta Messaging provider for delivery to a destination.

2.12. Developing a Jakarta Messaging application
Broadly speaking, a Jakarta Messaging application is one or more Jakarta Messaging clients that
exchange messages. The application may also involve non-Jakarta Messaging clients; however, these
clients use the Jakarta Messaging provider’s native API in place of JMS.

A Jakarta Messaging application can be architected and deployed as a unit. In many cases, Jakarta
Messaging clients are added incrementally to an existing application.

The message definitions used by an application may originate with Jakarta Messaging or they may
have been defined by the non-Jakarta Messaging part of the application.

2.12.1. Developing a Jakarta Messaging client

A typical Jakarta Messaging client using the classic API executes the following Jakarta Messaging setup
procedure:

• Use JNDI to find a ConnectionFactory object

• Use JNDI to find one or more Destination objects

• Use the ConnectionFactory to create a Jakarta Messaging Connection object with message delivery
inhibited

• Use the Connection to create one or more Jakarta Messaging Session objects

• Use a Session and the Destinations to create the MessageProducer and MessageConsumer objects
needed

• Tell the Connection to start delivery of messages

In contrast, a typical Jakarta Messaging client using the simplified API does the following:

• Use JNDI to find a ConnectionFactory object

• Use JNDI to find one or more Destination objects

• Use the ConnectionFactory to create a JMSContext object

• Use the JMSContext to create the JMSProducer and JMSConsumer objects needed.

2.11. Terminology for sending and receiving messages
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• Delivery of messages is started automatically

At this point a client has the basic Jakarta Messaging setup needed to produce and consume messages.

2.13. Security
Jakarta Messaging does not provide features for controlling or configuring message integrity or
message privacy.

It is expected that many Jakarta Messaging providers will provide such features. It is also expected that
configuration of these services will be handled by provider-specific administration tools. Clients will
get the proper security configuration as part of the administered objects they use.

2.14. Multi-threading
Jakarta Messaging could have required that all its objects support concurrent use. Since support for
concurrent access typically adds some overhead and complexity, the Jakarta Messaging design restricts
its requirement for concurrent access to those objects that would naturally be shared by a multi-
threaded client. The remaining objects are designed to be accessed by one logical thread of control at a
time.

Table 2‑2 Objects used in the classic API, showing which support concurrent use

Jakarta Messaging Object Supports Concurrent Use

Destination YES

ConnectionFactory YES

Connection YES

Session NO

MessageProducer NO

MessageConsumer NO

Table 2‑3 Objects used in the simplified API, showing which support concurrent use

Jakarta Messaging Object Supports Concurrent Use

Destination YES

ConnectionFactory YES

JMSContext NO

JMSProducer NO

JMSConsumer NO

Table 2‑4 Objects used in the domain-specific API for point-to-point messaging, showing which support

2.13. Security
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concurrent use

Jakarta Messaging Object Supports Concurrent Use

Destination YES

QueueConnectionFactory YES

QueueConnection YES

QueueSession NO

QueueSender NO

QueueReceiver NO

Table 2‑5 Objects used in the domain-specific API for pub/sub messaging, showing which support
concurrent use

Jakarta Messaging Object Supports Concurrent Use

Destination YES

TopicConnectionFactory YES

TopicConnection YES

TopicSession NO

TopicPublisher NO

TopicSubscriber NO

Jakarta Messaging defines some specific rules that restrict the concurrent use of sessions. These apply
to the Session object in the classic API and to the QueueSession and TopicSession objects in the domain-
specific APIs. They also apply to the JMSContext object in the simplified API since it encompasses a
session. Since these rules require more knowledge of Jakarta Messaging specifics than we have
presented at this point, they will be described later. Here we will describe the rationale for imposing
them.

There are two reasons for restricting concurrent access to sessions. First, sessions are the Jakarta
Messaging entity that supports transactions. It is very difficult to implement transactions that are
multi-threaded. Second, sessions support asynchronous message consumption. It is important that
Jakarta Messaging not require that client code used for asynchronous message consumption be
capable of handling multiple, concurrent messages. In addition, if a session has been set up with
multiple, asynchronous consumers, it is important that the client is not forced to handle the case
where these separate consumers are concurrently executing. These restrictions make Jakarta
Messaging easier to use for typical clients. More sophisticated clients can get the concurrency they
desire by using multiple sessions. In the classic API and the domain-specific APIs this means using
multiple session objects. In the simplified API this means using multiple JMSContext objects.

2.14. Multi-threading

Final Jakarta Messaging    17



2.15. Triggering clients
Some clients are designed to periodically wake up and process messages waiting for them. A message-
based application triggering mechanism is often used with this style of client. The trigger is typically a
threshold of waiting messages, etc.

Jakarta Messaging does not provide a mechanism for triggering the execution of a client. Some
providers may supply such a triggering mechanism via their administrative facilities.

2.16. Request/reply
Jakarta Messaging provides the JMSReplyTo message header field for specifying the Destination where
a reply to a message should be sent. The JMSCorrelationID header field of the reply can be used to
reference the original request. See Section 3.4 “Message header fields” for more information.

In addition, Jakarta Messaging provides a facility for creating temporary queues and topics that can be
used as a unique destination for replies.

Enterprise messaging products support many styles of request/reply, from the simple “one message
request yields one message reply” to “one message request yields streams of messages from multiple
respondents.” Rather than architect a specific Jakarta Messaging request/reply abstraction, Jakarta
Messaging provides the basic facilities on which many can be built.

The legacy domain-specific APIs define request/reply helper classes (classes written using Jakarta
Messaging) for both the point-to-point and pub/sub domains that implement a basic form of
request/reply. See sections 4.1.7 “QueueRequestor” and 4.2.10 “TopicRequestor”. Jakarta Messaging
providers and clients may provide more specialized implementations.

2.15. Triggering clients
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Chapter 3. Jakarta Messaging message model

3.1. Background
Enterprise messaging products treat messages as lightweight entities that consist of a header and a
body. The header contains fields used for message routing and identification; the body contains the
application data being sent.

Within this general form, the definition of a message varies significantly across products. There are
major differences in the content and semantics of headers. Some products use a self describing,
canonical encoding of message data; others treat data as completely opaque. Some products provide a
repository for storing message descriptions that can be used to identify and interpret message content;
others don’t.

It would be quite difficult for Jakarta Messaging to capture the breadth of this, sometimes conflicting,
union of message models.

3.2. Goals
The Jakarta Messaging message model has the following goals:

• Provide a single, unified message API

• Provide an API suitable for creating messages that match the format used by existing, non-Jakarta
Messaging applications

• Support the development of heterogeneous applications that span operating systems, machine
architectures, and computer languages

• Support messages containing Java objects

• Support messages containing Extensible Markup Language pages (see http://www.w3.org/XML).

3.3. Jakarta Messaging messages
Jakarta Messaging messages are composed of the following parts:

• Header - All messages support the same set of header fields. Header fields contain values used by
both clients and providers to identify and route messages.

• Properties - In addition to the standard header fields, messages provide a built-in facility for adding
optional header fields to a message.

◦ Application-specific properties - In effect, this provides a mechanism for adding application
specific header fields to a message.

◦ Standard properties - Jakarta Messaging defines some standard properties that are, in effect,
optional header fields.

3.1. Background
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◦ Provider-specific properties – Some Jakarta Messaging providers may require the use of
provider-specific properties. Jakarta Messaging defines a naming convention for these.

• Body - Jakarta Messaging defines several types of message body which cover the majority of
messaging styles currently in use.

3.4. Message header fields
The following subsections describe each Jakarta Messaging message header field. A message’s
complete header is transmitted to all Jakarta Messaging clients that receive the message. Jakarta
Messaging does not define the header fields transmitted to non-Jakarta Messaging clients.

3.4.1. JMSDestination

The JMSDestination header field contains the destination to which the message is being sent.

When a message is sent this value is ignored. After completion of the send it holds the Destination
object specified by the sending method.

When a message is received, its destination value must be equivalent to the value assigned when it was
sent.

3.4.2. JMSDeliveryMode

The JMSDeliveryMode header field contains the delivery mode specified when the message was sent.

When a message is sent this value is ignored. After completion of the send, it holds the delivery mode
specified by the sending method.

See Section 7.7 “Message delivery mode” for more information.

3.4.3. JMSMessageID

The JMSMessageID header field contains a value that uniquely identifies each message sent by a
provider.

When a message is sent, JMSMessageID is ignored. When the send method returns it contains a
provider-assigned value.

A JMSMessageID is a String value which should function as a unique key for identifying messages in a
historical repository. The exact scope of uniqueness is provider defined. It should at least cover all
messages for a specific installation of a provider where an installation is some connected set of
message routers.

All JMSMessageID values must start with the prefix 'ID:'. Uniqueness of message ID values across
different providers is not required.

3.4. Message header fields
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Since message IDs take some effort to create and increase a message’s size, some Jakarta Messaging
providers may be able to optimize message overhead if they are given a hint that message ID is not
used by an application. Both MessageProducer and JMSProducer provide a method
setDisableMessageID which allows the application to provide a hint to disable message ID. When an
application sets a producer to disable message ID, it is saying that it does not depend on the value of
message ID for the messages it produces. If the Jakarta Messaging provider accepts this hint, these
messages must have the message ID set to null; if the provider ignores the hint, the message ID must be
set to its normal unique value.

3.4.4. JMSTimestamp

The JMSTimestamp header field contains the time a message was handed off to a provider to be sent. It
is not the time the message was actually transmitted because the actual send may occur later due to
transactions or other client side queueing of messages.

When a message is sent, JMSTimestamp is ignored. When the send method returns, the field contains a
time value somewhere in the interval between the call and the return. It is in the format of a normal
Java millis time value.

Since timestamps take some effort to create and increase a message’s size, some Jakarta Messaging
providers may be able to optimize message overhead if they are given a hint that timestamp is not
used by an application. Both MessageProducer and JMSProducer provide a method
setDisableMessageTimestamp which allows the application to provide a hint to disable timestamps.
When an application sets a producer to disable timestamps it is saying that it does not depend on the
value of timestamp for the messages it produces. If the Jakarta Messaging provider accepts this hint,
these messages must have the timestamp set to zero; if the provider ignores the hint, the timestamp
must be set to its normal value.

3.4.5. JMSCorrelationID

A client can use the JMSCorrelationID header field to link one message with another. A typical use is to
link a response message with its request message.

JMSCorrelationID can hold one of the following:

• A provider-specific message ID

• An application-specific String

• A provider-native byte[] value.

Since each message sent by a Jakarta Messaging provider is assigned a message ID value it is
convenient to link messages via message ID. All message ID values must start with the 'ID:' prefix.

In some cases, an application (made up of several clients) needs to use an application-specific value for
linking messages. For instance, an application may use JMSCorrelationID to hold a value referencing
some external information. Application-specified values must not start with the 'ID:' prefix; this is

3.4. Message header fields
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reserved for provider-generated message ID values.

If a provider supports the native concept of correlation ID, a Jakarta Messaging client may need to
assign specific JMSCorrelationID values to match those expected by non-Jakarta Messaging clients. A
byte[] value is used for this purpose. Jakarta Messaging providers without native correlation ID values
are not required to support byte[] values[1] The use of a byte[] value for JMSCorrelationID is non-
portable.

3.4.6. JMSReplyTo

The JMSReplyTo header field contains a Destination supplied by a client when a message is sent. It is
the destination where a reply to the message should be sent.

Messages sent with a null JMSReplyTo value may be a notification of some event or they may just be
some data the sender thinks is of interest.

Messages sent with a JMSReplyTo value are typically expecting a response. A response may be
optional; it is up to the client to decide.

3.4.7. JMSRedelivered

If a client receives a message with the JMSRedelivered indicator set, it is likely, but not guaranteed, that
this message was delivered but not acknowledged in the past. In general, a provider must set the
JMSRedelivered message header field of a message whenever it is redelivering a message. If the field is
set to true, it is an indication to the consuming application that the message may have been delivered
in the past and that the application should take extra precautions to prevent duplicate processing. See
Section 6.2.10 “Message acknowledgment” for more information.

This header field has no meaning on send and is left unassigned by the sending method.

The Jakarta Messaging-defined message property JMSXDeliveryCount will be set to the number of
times a particular message has been delivered. See section 3.5.11 “JMSXDeliveryCount” for more
information.

3.4.8. JMSType

The JMSType header field contains a message type identifier supplied by a client when a message is
sent.

Some Jakarta Messaging providers use a message repository that contains the definitions of messages
sent by applications. The JMSType header field may reference a message’s definition in the provider’s
repository.

Jakarta Messaging does not define a standard message definition repository nor does it define a
naming policy for the definitions it contains.

Some messaging systems require that a message type definition for each application message be

3.4. Message header fields
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created and that each message specify its type. In order to work with such Jakarta Messaging
providers, Jakarta Messaging clients should assign a value to JMSType whether the application makes
use of it or not. This ensures that the field is properly set for those providers that require it.

To ensure portability, Jakarta Messaging clients should use symbolic values for JMSType that can be
configured at installation time to the values defined in the current provider’s message repository. If
string literals are used they may not be valid type names for some Jakarta Messaging providers.

3.4.9. JMSExpiration

When a message is sent, the Jakarta Messaging provider calculates its expiration time by adding the
time-to-live value specified on the send method to the time the message was sent (for transacted sends,
this is the time the client sends the message, not the time the transaction is committed). It is
represented as a long value which is defined as the difference, measured in milliseconds, between the
expiration time and midnight, January 1, 1970 UTC.

On return from the send method, the message’s JMSExpiration header field contains this value. When
a message is received its JMSExpiration header field contains this same value.

If the time-to-live is specified as zero, the message’s JMSExpiration header field is set to zero to indicate
that the message does not expire.

When an undelivered message’s expiration time is reached, the message should be destroyed. Jakarta
Messaging does not define a notification of message expiration.

Clients should not receive messages that have expired; however, Jakarta Messaging does not guarantee
that this will not happen.

3.4.10. JMSPriority

The JMSPriority header field contains the message’s priority.

When a message is sent this value is ignored. After completion of the send it holds the value specified
by the method sending the message.

Jakarta Messaging defines a ten level priority value with 0 as the lowest priority and 9 as the highest.
In addition, clients should consider priorities 0-4 as gradations of normal priority and priorities 5-9 as
gradations of expedited priority.

Jakarta Messaging does not require that a provider strictly implement priority ordering of messages;
however, it should do its best to deliver expedited messages ahead of normal messages.

3.4.11. How message header values are set

The following table lists the message header fields supported by Jakarta Messaging and whether they
are set by the Jakarta Messaging provider or by the client application.

3.4. Message header fields
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Table 3‑1 Message header field values

Header Fields Set By Setter method

JMSDestination Jakarta Messaging provider send
method

setJMSDestination
(not for client use)

JMSDeliveryMode Jakarta Messaging provider send
method

setJMSDeliveryMode(not for
client use)

JMSExpiration Jakarta Messaging provider send
method

setJMSExpiration

(not for client use)

JMSDeliveryTime Jakarta Messaging provider send
method

setJMSDeliveryTime

(not for client use)

JMSPriority Jakarta Messaging provider send
method

setJMSPriority

(not for client use)

JMSMessageID Jakarta Messaging provider send
method

setJMSMessageID

(not for client use)

JMSTimestamp Jakarta Messaging provider send
method

setJMSTimestamp

(not for client use)

JMSCorrelationID Client application setJMSCorrelationID,
setJMSCorrelationIDAsBytes

JMSReplyTo Client application setJMSReplyTo

JMSType Client application setJMSType

JMSRedelivered Jakarta Messaging provider prior
to delivery

setJMSRedelivered

(not for client use)

Message header fields that are defined as being set by the “client application” in the above table may
be set by the client application, using the appropriate setter method, before the message is sent.

Message header fields that are defined as being set by the “Jakarta Messaging provider send method”
will be available on the sending client as well as on the receiving client. If a message is sent
synchronously (see section 7.2 “Synchronous send”) then these message header fields may be accessed
on the sending client when the send method returns. If a message is sent asynchronously (see section
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7.3 “Asynchronous send”) then these message header fields may be accessed on the sending client only
after the completion listener has been invoked. The Jakarta Messaging provider sets these header
fields using the appropriate setter methods. These setter methods are public to allow a Jakarta
Messaging provider to set these fields when handling a message whose implementation is not its own.
Client applications should not use these setter methods. Any values set by calling these methods prior
to sending a message will be ignored and overwritten.

A client application may specify the delivery mode, priority, time to live and delivery delay of a
message using appropriate methods on the MessageProducer or JMSProducer object, but not by
methods on the Message object itself.

Message header fields that are defined as being set by the “Jakarta Messaging provider prior to
delivery” will be set by the Jakarta Messaging provider on the message delivered to the receiving
client.

3.4.12. Overriding message header fields

Jakarta Messaging permits an administrator to configure Jakarta Messaging to override the client
specified values for delivery mode, priority, time to live and delivery delay. If this is done, the
JMSDeliveryMode, JMSPriority, JMSExpiration and JMSDeliveryTime header field value must reflect
the administratively specified value.

Jakarta Messaging does not define specifically how an administrator overrides these header field
values. A Jakarta Messaging provider is not required to support this administrative option.

3.4.13. JMSDeliveryTime

When a message is sent, the Jakarta Messaging provider calculates its delivery time by adding the
delivery delay value specified on the send method to the time the message was sent (for transacted
sends, this is the time the client sends the message, not the time the transaction is committed). It is
represented as a long value which is defined as the difference, measured in milliseconds, between the
delivery time time and midnight, January 1, 1970 UTC.

On return from the send method, the message’s JMSDeliveryTime header field contains this value.
When a message is received its JMSDeliveryTime header field contains this same value.

A message’s delivery time is the earliest time when a provider may make the message visible on the
target destination and available for delivery to consumers.

Clients must not receive messages before the delivery time has been reached.

3.5. Message properties
In addition to the header fields defined here, the Message interface contains a built-in facility for
supporting property values. In effect, this provides a mechanism for adding optional header fields to a
message.

3.5. Message properties
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Properties allow a client, via message selectors (see Section 3.8 “Message selection”), to have a Jakarta
Messaging provider select messages on its behalf using application-specific criteria.

3.5.1. Property names

Property names must obey the rules for a message selector identifier. See Section 3.8 “Message
selection” for more information.

3.5.2. Property values

Property values can be boolean, byte, short, int, long, float, double, and String.

3.5.3. Using properties

Property values are set prior to sending a message. When a client receives a message, its properties are
in read-only mode. If a client attempts to set properties at this point, a MessageNotWriteableException
is thrown.

A property value may duplicate a value in a message’s body or it may not. Although Jakarta Messaging
does not define a policy for what should or should not be made a property, application developers
should note that Jakarta Messaging providers will likely handle data in a message’s body more
efficiently than data in a message’s properties. For best performance, applications should only use
message properties when they need to customize a message’s header. The primary reason for doing
this is to support customized message selection.

See Section 3.8 “Message selection” for more information about Jakarta Messaging message properties.

3.5.4. Property value conversion

Properties support the following conversion table. The marked cases must be supported. The
unmarked cases must throw the Jakarta Messaging MessageFormatException. The String to numeric
conversions must throw the java.lang.NumberFormatException if the numeric’s valueOf method does
not accept the String value as a valid representation. Attempting to read a null value as a Java
primitive type must be treated as calling the primitive’s corresponding valueOf(String) conversion
method with a null value.

A value set as the row type can be read as the column type.

Table 3‑2 Property value conversion

boolean byte short int long float double String

boolean X X

byte X X X X X

short X X X X

3.5. Message properties
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boolean byte short int long float double String

int X X X

long X X

float X X X

double X X

String X X X X X X X X

3.5.5. Property values as objects

In addition to the type-specific set/get methods for properties, Jakarta Messaging provides the
setObjectProperty/getObjectProperty methods. These support the same set of property types using the
objectified primitive values. Their purpose is to allow the decision of property type to be made at
execution time rather than at compile time. They support the same property value conversions.

The setObjectProperty method accepts values of Boolean, Byte, Short, Integer, Long, Float, Double and
String. An attempt to use any other class must throw a Jakarta Messaging MessageFormatException.

The getObjectProperty method only returns values of null, Boolean, Byte, Short, Integer, Long, Float,
Double and String. A null value is returned if a property by the specified name does not exist.

3.5.6. Property iteration

The order of property values is not defined. To iterate through a message’s property values, use
getPropertyNames to retrieve a property name enumeration and then use the various property get
methods to retrieve their values.

The getPropertyNames method does not return the names of the Jakarta Messaging standard header
fields.

3.5.7. Clearing a message’s property values

A message’s properties are deleted by the clearProperties method. This leaves the message with an
empty set of properties. New property entries can then be both created and read.

Clearing a message’s property entries does not clear the value of its body.

Jakarta Messaging does not provide a way to remove an individual property entry once it has been
added to a message.

3.5.8. Non-existent properties

Getting a property value for a name which has not been set is handled as if the property exists with a
null value.

3.5. Message properties
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3.5.9. Jakarta Messaging defined properties

Jakarta Messaging reserves the 'JMSX' property name prefix for Jakarta Messaging defined properties.
The full set of these properties is provided in Table 3‑3. This table defines:

• The name of the property

• The type of the property (integer or string)

• Whether support for the property is mandatory or optional.

• Whether the property is set by the sending client, by the provider when the message is sent, or by
the provider when the message is received.

• The purpose of the property

Table 3‑3 Jakarta Messaging defined properties

Name Type Optional or
mandatory

Set By Use

JMSXUserID String Optional Provider on Send The identity of the
user sending the
message

JMSXAppID String Optional Provider on Send The identity of the
application
sending the
message

JMSXDeliveryCount int Mandatory Provider on
Receive

The number of
message delivery
attempts. See
section 3.5.11
“JMSXDeliveryCou
nt”.

JMSXGroupID String Optional Client The identity of the
message group this
message is part of

JMSXGroupSeq int Optional Client The sequence
number of this
message within the
group; the first
message is 1, the
second 2,…

3.5. Message properties
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Name Type Optional or
mandatory

Set By Use

JMSXProducerTXID String Optional Provider on Send The transaction
identifier of the
transaction within
which this message
was produced

JMSXConsumerTXI
D

String Optional Provider on
Receive

The transaction
identifier of the
transaction within
which this message
was consumed

JMSXRcvTimestam
p

long Optional Provider on
Receive

The time Jakarta
Messaging
delivered the
message to the
consumer

3.5. Message properties
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Name Type Optional or
mandatory

Set By Use

JMSXState int Optional Provider Assume there
exists a message
warehouse that
contains a separate
copy of each
message sent to
each consumer
and that these
copies exist from
the time the
original message
was sent.

Each copy’s state is
one of: 1(waiting),
2(ready),
3(expired) or
4(retained)

Since state is of no
interest to
producers and
consumers it is not
provided to either.
It is only of
relevance to
messages looked
up in a warehouse
and Jakarta
Messaging
provides no API
for this.

New Jakarta Messaging defined properties may be added in later versions of Jakarta Messaging.

The Enumeration ConnectionMetaData.getJMSXPropertyNames() method returns the names of the
JMSX properties supported by a connection.

JMSX properties may be referenced in message selectors whether or not they are supported by a
connection. If they are not present in a message, they are treated like any other absent property. The
effect of setting a message selector on a property which is set by the provider on receive is undefined.

3.5. Message properties

30    Jakarta Messaging Final



The existence, in a particular message, of optional Jakarta Messaging defined properties that are set by
a Jakarta Messaging Provider depends on how a particular provider controls use of the property. It
may choose to include them in some messages and omit them in others depending on administrative
or other criteria.

JMSX properties ‘set by provider on send’ are available to both the producer and the consumers of the
message. JSMX properties set by the provider on receive are only available to the consumers.
JMSXGroupID and JMSXGroupSeq are standard properties clients should use if they want to group
messages. All providers must support them.

The case of these JMSX property names must be as defined in the table above.

Unless specifically noted, the values and semantics of the JMSX properties are undefined.

3.5.10. Provider-specific properties

Jakarta Messaging reserves the ‘JMS_<vendor_name>’ property name prefix for provider-specific
properties. Each provider defines their own value of <vendor_name>. This is the mechanism a Jakarta
Messaging provider uses to make its special per message services available to a Jakarta Messaging
client.

The purpose of provider-specific properties is to provide special features needed to support Jakarta
Messaging use with provider-native clients. They should not be used for Jakarta Messaging to Jakarta
Messaging messaging.

3.5.11. JMSXDeliveryCount

When a client receives a message the mandatory Jakarta Messaging-defined message property
JMSXDeliveryCount will be set to the number of times the message has been delivered. The first time a
message is received it will be set to 1, so a value of 2 or more means the message has been redelivered.

If the JMSRedelivered message header value is set then the JMSXDeliveryCount property must always
be 2 or more. See section 3.4.7 “JMSRedelivered” for more information about the JMSRedelivered
message header,

The purpose of the JMSXDeliveryCount property is to allow consuming applications to identify whether
a particular message is being repeatedly redelivered and take appropriate action.

The value of the JMSXDeliveryCount property is not guaranteed to be exactly correct. The Jakarta
Messaging provider is not expected to persist this value to ensure that its value is not lost in the event
of a failure.

3.6. Message acknowledgment
All Jakarta Messaging messages support the acknowledge method for use when a client has specified
that a Jakarta Messaging consumer’s messages are to be explicitly acknowledged.

3.6. Message acknowledgment
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If a client uses automatic acknowledgment, calls to acknowledge are ignored.

See Section 6.2.10 “Message acknowledgment” for more information.

3.7. The Message interface
The Message interface is the root interface for all Jakarta Messaging messages. It defines the Jakarta
Messaging message header fields, property facility and the acknowledge method used for all messages.

3.8. Message selection
Many messaging applications need to filter and categorize the messages they produce.

In the case where a message is sent to a single receiver, this can be done with reasonable efficiency by
putting the criteria in the message and having the receiving client discard the ones it’s not interested
in.

When a message is broadcast to many clients, it becomes useful to place the criteria into the message
header so that it is visible to the Jakarta Messaging provider. This allows the provider to handle much
of the filtering and routing work that would otherwise need to be done by the application.

Jakarta Messaging provides a facility that allows clients to delegate message selection to their Jakarta
Messaging provider. This simplifies the work of the client and allows Jakarta Messaging providers to
eliminate the time and bandwidth they would otherwise waste sending messages to clients that don’t
need them.

Clients attach application-specific selection criteria to messages using message properties. Clients
specify message selection criteria using Jakarta Messaging message selector expressions.

3.8.1. Message selector

A Jakarta Messaging message selector allows a client to specify, by message header, the messages it’s
interested in. Only messages whose headers and properties match the selector are delivered. The
semantics of not delivered differ a bit depending on the MessageConsumer being used. See section 4.1.2
“Queue semantics” and 4.2.2 “Topic semantics” for more details.

Message selectors cannot reference message body values.

A message selector matches a message when the selector evaluates to true when the message’s header
field and property values are substituted for their corresponding identifiers in the selector.

3.8.1.1. Message selector syntax

A message selector is a String whose syntax is based on a subset of the SQL92[2] conditional expression
syntax.

3.7. The Message interface
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If the value of a message selector is an empty string, the value is treated as a null and indicates that
there is no message selector for the message consumer.

The order of evaluation of a message selector is from left to right within precedence level. Parentheses
can be used to change this order.

Predefined selector literals and operator names are written here in upper case; however, they are case
insensitive.

A selector can contain:

• Literals:

◦ A string literal is enclosed in single quotes, with an included single quote represented by
doubled single quote; for example, 'literal' and 'literal''s'. Like Java String literals, these use the
Unicode character encoding.

◦ An exact numeric literal is a numeric value without a decimal point, such as 57, -957, +62;
numbers in the range of Java long are supported. Exact numeric literals use the Java integer
literal syntax.

◦ An approximate numeric literal is a numeric value in scientific notation, such as 7E3 and
-57.9E2, or a numeric value with a decimal, such as 7., -95.7, and +6.2; numbers in the range of
Java double are supported. Approximate literals use the Java floating-point literal syntax.

◦ The boolean literals TRUE and FALSE.

• Identifiers:

◦ An identifier is an unlimited-length character sequence that must begin with a Java identifier
start character; all following characters must be Java identifier part characters. An identifier
start character is any character for which the method Character.isJavaIdentifierStart returns
true. This includes '_' and '$'. An identifier part character is any character for which the method
Character.isJavaIdentifierPart returns true.

◦ Identifiers cannot be the names NULL, TRUE, or FALSE.

◦ Identifiers cannot be NOT, AND, OR, BETWEEN, LIKE, IN, IS, or ESCAPE.

◦ Identifiers are either header field references or property references. The type of a property
value in a message selector corresponds to the type used to set the property. If a property that
does not exist in a message is referenced, its value is NULL. The semantics of evaluating NULL
values in a selector are described in Section 3.8.1.2 “Null values”.

◦ The conversions that apply to the get methods for properties do not apply when a property is
used in a message selector expression. For example, suppose you set a property as a string
value, as in the following:

myMessage.setStringProperty("NumberOfOrders", "2");

The following expression in a message selector would evaluate to false, because a string cannot
be used in an arithmetic expression:

3.8. Message selection
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"NumberOfOrders > 1"

◦ Identifiers are case sensitive.

◦ Message header field references are restricted to JMSDeliveryMode, JMSPriority, JMSMessageID,
JMSTimestamp, JMSCorrelationID, and JMSType. JMSMessageID, JMSCorrelationID, and
JMSType values may be null and if so are treated as a NULL value.

◦ Any name beginning with 'JMSX' is a Jakarta Messaging defined property name.

◦ Any name beginning with 'JMS_' is a provider-specific property name.

◦ Any name that does not begin with 'JMS' is an application-specific property name.

• Whitespace is the same as that defined for Java: space, horizontal tab, form feed and line
terminator.

• Expressions:

◦ A selector is a conditional expression; a selector that evaluates to true matches; a selector that
evaluates to false or unknown does not match.

◦ Arithmetic expressions are composed of themselves, arithmetic operations, identifiers with
numeric values, and numeric literals.

◦ Conditional expressions are composed of themselves, comparison operations, logical
operations, identifiers with boolean values, and boolean literals.

• Standard bracketing () for ordering expression evaluation is supported.

• Logical operators in precedence order: NOT, AND, OR

• Comparison operators: =, >, >=, <, ⇐, <> (not equal)

◦ Only like type values can be compared. One exception is that it is valid to compare exact
numeric values and approximate numeric values (the type conversion required is defined by
the rules of Java numeric promotion). If the comparison of non-like type values is attempted,
the value of the operation is false. If either of the type values evaluates to NULL, the value of the
expression is unknown.

◦ String and Boolean comparison is restricted to = and <>. Two strings are equal if and only if
they contain the same sequence of characters.

• Arithmetic operators in precedence order:

◦ +, - (unary)

◦ *, / (multiplication and division)

◦ +, - (addition and subtraction)

◦ Arithmetic operations must use Java numeric promotion.

• arithmetic-expr1 [NOT] BETWEEN arithmetic-expr2 and arithmetic-expr3 (comparison operator)

◦ "age BETWEEN 15 AND 19" is equivalent to "age >= 15 AND age ⇐ 19"

◦ "age NOT BETWEEN 15 AND 19" is equivalent to "age < 15 OR age > 19"

3.8. Message selection
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• identifier [NOT] IN (string-literal1, string-literal2,…) (comparison operator where identifier has a
String or NULL value).

◦ "Country IN ('UK', 'US', 'France')" is true for 'UK' and false for 'Peru'; it is equivalent to the
expression (Country = 'UK') OR (Country = 'US') OR (Country = 'France')

◦ Country NOT IN ('UK', 'US', 'France') is false for 'UK' and true for 'Peru'; it is equivalent to the
expression "NOT Country = 'UK') OR (Country = 'US') OR (Country = 'France'"

◦ If identifier of an IN or NOT IN operation is NULL, the value of the operation is unknown.

• identifier [NOT] LIKE pattern-value [ESCAPE escape-character] (comparison operator, where
identifier has a String value; pattern-value is a string literal where '_' stands for any single
character; '%' stands for any sequence of characters, including the empty sequence, and all other
characters stand for themselves. The optional escape-character is a single-character string literal
whose character is used to escape the special meaning of the '_' and '%' in pattern-value.)

◦ "phone LIKE '12%3'" is true for '123' or '12993' and false for '1234'

◦ "word LIKE 'l_se'" is true for 'lose' and false for 'loose'

◦ "underscored LIKE '_%' ESCAPE '\'" is true for '_foo' and false for 'bar'

◦ "phone NOT LIKE '12%3'" is false for '123' and '12993' and true for '1234'

◦ If identifier of a LIKE or NOT LIKE operation is NULL, the value of the operation is unknown.

• identifier IS NULL (comparison operator that tests for a null header field value or a missing
property value)

◦ "prop_name IS NULL"

• identifier IS NOT NULL (comparison operator that tests for the existence of a non-null header field
value or property value)

◦ "prop_name IS NOT NULL"

Jakarta Messaging providers are required to verify the syntactic correctness of a message selector at
the time it is presented. A method providing a syntactically incorrect selector must result in a Jakarta
Messaging InvalidSelectorException. Jakarta Messaging providers may also optionally provide some
semantic checking at the time the selector is presented. Not all semantic checking can be performed at
the time a message selector is presented, because property types are not known.

The following message selector selects messages with a message type of car and color of blue and
weight greater than 2500 lbs:

"JMSType = 'car' AND color = 'blue' AND weight > 2500"

3.8.1.2. Null values

As noted above, header fields and property values may be NULL. The evaluation of selector
expressions containing NULL values is defined by SQL 92 NULL semantics. A brief description of these
semantics is provided here.

3.8. Message selection
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SQL treats a NULL value as unknown. Comparison or arithmetic with an unknown value always yields
an unknown value.

The IS NULL and IS NOT NULL operators convert an unknown header or property value into the
respective TRUE and FALSE values.

The boolean operators use three-valued logic as defined by the following tables:

Table 3‑4 The definition of the AND operator

AND T F U

T T F U

F F F F

U U F U

Table 3‑5 The definition of the OR operator

OR T F U

T T T T

F T F U

U T U U

Table 3‑6 The definition of the NOT operator

NOT

T F

F T

U U

3.8.1.3. Special notes

When used in a message selector JMSDeliveryMode is treated as having the values 'PERSISTENT' and
'NON_PERSISTENT'.

Date and time values should use the standard Java long millisecond value. When a date or time literal
is included in a message selector, it should be an integer literal for a millisecond value. The standard
way to produce millisecond values is to use java.util.Calendar.

Although SQL supports fixed decimal comparison and arithmetic, Jakarta Messaging message selectors
do not. This is the reason for restricting exact numeric literals to those without a decimal (and the
addition of numerics with a decimal as an alternate representation for approximate numeric values).

SQL comments are not supported.

3.8. Message selection
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3.9. Access to sent messages
After sending a message, a client may retain and modify it without affecting the message that has been
sent. The same message object may be sent multiple times.

During the execution of its sending method, the message must not be changed by the client. If it is
modified, the result of the send is undefined.

3.10. Changing the value of a received message
When a message is received, its header field values can be changed; however, its property entries and
its body are read-only, as specified in this chapter.

The rationale for the read-only restriction is that it gives Jakarta Messaging Providers more freedom in
how they implement the management of received messages. For instance, they may return a message
object that references property entries and body values that reside in an internal message buffer
rather than being forced to make a copy.

A consumer can modify a received message after calling either the clearBody or clearProperties
method to make the body or properties writable. If the consumer modifies a received message, and the
message is subsequently redelivered, the redelivered message must be the original, unmodified
message (except for headers and properties modified by the Jakarta Messaging provider as a result of
the redelivery, such as the JMSRedelivered header and the JMSXDeliveryCount property).

3.11. Jakarta Messaging message body
Jakarta Messaging provides five forms of message body. Each form is defined by a message interface:

• StreamMessage - a message whose body contains a stream of Java primitive values. It is filled and
read sequentially.

• MapMessage - a message whose body contains a set of name-value pairs where names are String
objects and values are Java primitive types. The entries can be accessed sequentially by
enumerator or randomly by name. The order of the entries is undefined.

• TextMessage - a message whose body contains a java.lang.String. The inclusion of this message type
is based on our presumption that String messages will be used extensively. One reason for this is
that XML will likely become a popular mechanism for representing the content of Jakarta
Messaging messages.

• ObjectMessage - a message that contains a serializable Java object. If a collection of Java objects is
needed, one of the collection classes provided in JDK 1.2 can be used.

• BytesMessage - a message that contains a stream of uninterpreted bytes. This message type is for
literally encoding a body to match an existing message format. In many cases, it will be possible to
use one of the other, self-defining, message types instead. Although Jakarta Messaging allows the
use of message properties with byte messages it is typically not done since the inclusion of properties
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may affect the format.

3.11.1. Clearing a message body

The clearBody method of Message resets the value of the message body to the ‘empty’ initial message
value as set by the message type’s create method provided by Session. Clearing a message’s body does
not clear its property entries.

3.11.2. Read-only message body

When a message is received, its body is read only. If an attempt is made to change the body a
MessageNotWriteableException must be thrown. If its body is subsequently cleared, the body is in the
same state as an empty body in a newly created message.

3.11.3. Conversions provided by StreamMessage and MapMessage

Both StreamMessage and MapMessage support the same set of primitive data types.

The types can be read or written explicitly using methods for each type. They may also be read or
written generically as objects. For instance, a call to MapMessage.setInt("foo", 6) is equivalent to
MapMessage.setObject("foo", new Integer(6)). Both forms are provided because the explicit form is
convenient for static programming and the object form is needed when types are not known at
compile time.

Both StreamMessage and MapMessage support the following conversion table. The marked cases must
be supported. The unmarked cases must throw a Jakarta Messaging MessageFormatException. The
String to numeric conversions must throw a java.lang.NumberFormatException if the numeric’s
valueOf() method does not accept the String value as a valid representation.

StreamMessage and MapMessage must implement the String to boolean conversion as specified by the
valueOf(String) method of Boolean as defined by the Java language.

Attempting to read a null value as a Java primitive type must be treated as calling the primitive’s
corresponding valueOf(String) conversion method with a null value. Since char does not support a
String conversion, attempting to read a null value as a char must throw NullPointerException.

Getting a MapMessage field for a field name that has not been set is handled as if the field exists with a
null value.

If a read method of StreamMessage or BytesMessage throws a MessageFormatException or
NumberFormatException, the current position of the read pointer must not be incremented. A
subsequent read must be capable of recovering from the exception by rereading the data as a different
type.

A value written as the row type can be read as the column type

Table 3‑7 Conversions for StreamMessage and MapMessage
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boolea
n

byte short char int long float double String byte[]

boolean X X

byte X X X X X

short X X X X

char X X

int X X X

long X X

float X X X

double X X

String X X X X X X X X

byte[] X

3.11.4. Messages for non-Jakarta Messaging clients

A number of enterprise messaging systems support some form of self-defining stream and/or map
native message type. Although clients could use BytesMessage to construct native messages of this
form, Jakarta Messaging provides the StreamMessage and MapMessage types as a more convenient
API.

For instance, when a client is using a Jakarta Messaging provider that supports a native map message;
and, it wishes to send a map message that can be read by both Jakarta Messaging and native clients, it
uses a MapMessage. When the message is sent, the provider translates it into its native form. Native
clients can then receive it. If a Jakarta Messaging provider receives it, the provider translates it back
into a MapMessage.

Even when a new Jakarta Messaging application with newly defined messages is written, the
application may choose to use StreamMessage and MapMessage to ensure that later, non-Jakarta
Messaging clients will be able to read them.

If a Jakarta Messaging client sends a StreamMessage or MapMessage, it must be translated by a
receiving Jakarta Messaging provider into an equivalent StreamMessage or MapMessage. When passed
between Jakarta Messaging clients, a message must always retain its full form. For instance, a message
sent as MapMessage must not arrive at a Jakarta Messaging client as a BytesMessage.

If a Jakarta Messaging provider receives a message created by a native client, the provider should do
its best to transform it into the ‘best’ Jakarta Messaging message type. For instance, if it is a native
stream message it should be transformed into a StreamMessage. If this is not possible, the provider is
always able to transform it into a BytesMessage.

3.11. Jakarta Messaging message body

Final Jakarta Messaging    39



3.12. Provider implementations of Jakarta Messaging
message interfaces
Jakarta Messaging provides a set of message interfaces that define the Jakarta Messaging message
model. It does not provide implementations of these interfaces.

Each Jakarta Messaging provider provides its own implementation of its Session’s message creation
methods. This allows a provider to use message implementations that are tailored to its needs.

A provider must be prepared to accept, from a client, a message whose implementation is not one of its
own. A message with a ‘foreign’ implementation may not be handled as efficiently as a provider’s own
implementation; however, it must be handled.

The Jakarta Messaging message interfaces provide write/set methods for setting object values in a
message body and message properties. All of these methods must be implemented to copy their input
objects into the message. The value of an input object is allowed to be null and will return null when
accessed. One exception to this is that BytesMessage does not support the concept of a null stream and
attempting to write a null into it must throw java.lang.NullPointerException.

The Jakarta Messaging message interfaces provide read/get methods for accessing objects in a message
body and message properties. All of these methods must be implemented to return a copy of the
accessed message objects.

[1] Their implementation of setJMSCorrelationIDAsBytes() and getJMSCorrelationIDAsBytes() may throw
java.lang.UnsupportedOperationException.
[2] See X/Open CAE Specification Data Management: Structured Query Language (SQL), Version 2, ISBN: 1-85912-151-9
March 1996.

3.12. Provider implementations of Jakarta Messaging message interfaces
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Chapter 4. Messaging domains
Jakarta Messaging supports two styles of messaging:

• point-to-point (PTP) messaging using queues

• publish-and-subscribe (pub/sub)messaging using topics

4.1. Jakarta Messaging point-to-point model

4.1.1. Overview

Point-to-point systems are about working with queues of messages. They are point-to-point in that a
client sends a message to a specific queue. Some PTP systems blur the distinction between PTP and
pub/sub by providing system clients that automatically distribute messages.

It is common for a client to have all its messages delivered to a single queue.

Like any generic mailbox, a queue can contain a mixture of messages. And, like real mailboxes,
creating and maintaining each queue is somewhat costly. Most queues are created administratively
and are treated as static resources by their clients.

The Jakarta Messaging PTP model defines how a client works with queues: how it finds them, how it
sends messages to them, and how it receives messages from them.

4.1.2. Queue semantics

When point-to-point messaging is being used, an application sends messages to a queue.

An application may consume messages from the queue by creating a consumer (a MessageConsumer,
JMSConsumer or QueueReceiver object) on that queue. A consumer may be used to consume messages
either synchronously or asynchronously.

A queue may have more than one consumer. Each message in the queue is delivered to only one
consumer.

A consumer may be configured to use a message selector. In this case only messages whose properties
match the message selector will be delivered to the consumer. Messages which are not selected remain
on the queue or are delivered to another consumer.

The order in which an individual consumer receives messages is described in section 6.2.9 “Message
order” below.

By definition, if a consumer uses a message selector, or there are other consumers on the same queue,
then a consumer may not receive all the messages on the queue. However those messages that are
delivered to the consumer will be delivered in the order defined in section 6.2.9.

4.1. Jakarta Messaging point-to-point model
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Apart from the requirements of any message selectors, Jakarta Messaging does not define how
messages are distributed between multiple consumers on the same queue.

4.1.3. Queue management

Jakarta Messaging does not define facilities for creating, administering, or deleting long-lived queues
(it does provide such a mechanism for temporary queues). Since most clients use statically defined
queues this is not a problem.

4.1.4. Queue

A Queue object encapsulates a provider-specific queue name. It is the way a client specifies the identity
of a queue to Jakarta Messaging methods.

The actual length of time messages are held by a queue and the consequences of resource overflow are
not defined by Jakarta Messaging.

See chapter 5 “Administered objects” for more information about Jakarta Messaging Destination
objects.

4.1.5. TemporaryQueue

A TemporaryQueue is a unique Queue object created for the duration of a connection. It is a system-
defined queue that can only be consumed by the connection that created it.

See Section 6.2.2 “Creating temporary destinations” for more information.

4.1.6. QueueBrowser

A client uses a QueueBrowser to look at messages on a queue without removing them. A
QueueBrowser can be created from a JMSContext, Session or QueueSession.

The browse methods return a java.util.Enumeration that is used to scan the queue’s messages. It may
be an enumeration of the entire content of a queue, or it may contain only the messages matching a
message selector.

Messages may be arriving and expiring while the scan is done. Jakarta Messaging does not require the
content of an enumeration to be a static snapshot of queue content. Whether these changes are visible
or not depends on the Jakarta Messaging provider.

A message must not be returned by a QueueBrowser before its delivery time has been reached.

4.1.7. QueueRequestor

The legacy domain-specific API for point-to-point messaging provides a QueueRequestor helper class to
simplify making service requests.

4.1. Jakarta Messaging point-to-point model

42    Jakarta Messaging Final



The QueueRequestor constructor is given a non-transacted QueueSession and a destination queue. It
creates a TemporaryQueue for the responses and provides a request method that sends the request
message and waits for its reply.

This is a very basic request/reply abstraction which assumes the session is non-transacted with a
delivery mode of either AUTO_ACKNOWLEDGE or DUPS_OK_ACKNOWLEDGE. It is expected that most
applications will create less basic implementations.

There is no equivalent to this class for the classic or simplified APIs. Applications using these APIs are
expected to create their own implementations.

4.1.8. Reliability

A queue is typically created by an administrator and exists for a long time. It is always available to
hold messages sent to it, whether or not the client that consumes its messages is active. For this reason,
a client does not have to take any special precautions to ensure it does not miss messages.

4.2. Jakarta Messaging publish/subscribe model

4.2.1. Overview

The Jakarta Messaging pub/sub model defines how Jakarta Messaging clients publish messages to, and
subscribe to messages from, a well-known node in a content-based hierarchy. Jakarta Messaging calls
these nodes topics.

In pub/sub messaging, the term publish is sometimes used to refer to the act of sending messages to a
topic instead of the more generic terms send or produce.

The term subscribe is used to refer to the act of registering an interest in a topic. This creates a
subscription from which a client consumes or receives messages.

A topic can be thought of as a mini message broker that gathers and distributes messages addressed to
it. By relying on the topic as an intermediary, message publishers are kept independent of subscribers
and vice versa. The topic automatically adapts as both publishers and subscribers come and go.

4.2.2. Topic semantics

When pub/sub messaging is being used, an application sends messages to a topic.

An application consumes messages from a topic by creating a subscription on that topic, and creating a
consumer (a MessageConsumer, JMSConsumer or TopicSubscriber object) on that subscription.

A subscription may be thought of as an entity within the Jakarta Messaging provider itself whereas a
consumer is a Jakarta Messaging object within the application.

A subscription will receive a copy of every message that is sent to the topic after the subscription is
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created, except if a message selector is specified. If a message selector is specified then only those
messages whose properties match the message selector will be added to the subscription.

Each copy of the message is treated as a completely separate message. Work done on one copy has no
effect on any other; acknowledging one does not acknowledge any other; one message may be
delivered immediately, while another waits for its consumer to process messages ahead of it.

Some subscriptions are restricted to a single consumer. In this case all the messages in the subscription
are delivered to that consumer. Some subscriptions allow multiple consumers. In this case each
message in the subscription is delivered to only one consumer. Jakarta Messaging does not define how
messages are distributed between multiple consumers on the same subscription.

The order in which messages are delivered to a consumer is described in section 6.2.10 “Message
order” below. By definition, if a subscription uses a message selector, or there are other consumers on
the same subscription, then a consumer may not receive all the messages sent to the topic. However
those messages that are delivered to the consumer will be delivered in the order defined in section
6.2.10.

Subscriptions may be durable or non-durable.

A non-durable subscription only exists for as long as there is an active consumer on the subscription.
This means that any messages sent to the topic will only be added to the subscription whilst a
consumer exists and is not closed.

A non-durable subscription may be either unshared or shared.

• An unshared non-durable subscription does not have a name and may have only a single consumer
object associated with it. It is created automatically when the consumer object is created. It is not
persisted and is deleted automatically when the consumer object is closed. See section 8.3.1
“Unshared non-durable subscriptions” .

• A shared non-durable subscription is identified by name and an optional client identifier, and may
have several consumer objects consuming messages from it. It is created automatically when the
first consumer object is created. It is not persisted and is deleted automatically when the last
consumer object is closed. See section 8.3.2 “Shared non-durable subscriptions” below.

At the cost of higher overhead, a subscription may be durable. A durable subscription is persisted and
continues to accumulate messages until explicitly deleted, even if there are no consumer objects
consuming messages from it.

A durable subscription has a unique identity that is retained by Jakarta Messaging. Subsequent
consumer objects can resume the subscription in the state it was left by the prior consumer. If there
are no active consumers on a durable subscription, Jakarta Messaging retains the subscription’s
messages until they are consumed or until they expire.

A durable subscription may also be either unshared or shared.

• An unshared durable subscription is identified by name and client identifier (which must be set)

4.2. Jakarta Messaging publish/subscribe model
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and may have only a single consumer object associated with it. See section 8.3.3 “Unshared durable
subscriptions”

• A shared durable subscription is identified by name and an optional client identifier, and may have
several consumer objects consuming messages from it. See section 8.3.4 “Shared durable
subscriptions” below.

A durable subscription which exists but which does not currently have a non-closed consumer
object associated with it is described as being inactive.

When an unshared non-durable or durable subscription is created, the noLocal parameter may be
specified. The effect of setting this parameter is defined in sections 8.3.1 “Unshared non-durable
subscriptions” and 8.3.3 “Unshared durable subscriptions” below.

4.2.3. Pub/sub latency

Since there is typically some latency in all pub/sub systems, the exact messages seen by a subscriber
may vary depending on how quickly a Jakarta Messaging provider propagates the existence of a new
subscriber and the length of time a provider retains messages in transit.

For instance, some messages from a distant publisher may be missed because it may take a second for
the existence of a new subscriber to be propagated system wide. When a new subscriber is created, it
may receive messages sent earlier because a provider may still have them available.

Jakarta Messaging does not define the exact semantics that apply during the interval when a pub/sub
provider is adjusting to a new client. Jakarta Messaging semantics only apply once the provider has
reached a ‘steady state’ with respect to a new client.

4.2.4. Subscription name characters and length

The Jakarta Messaging provider must allow a durable or non-durable subscription name to contain the
following characters:

• Java letters

• Java digits

• Underscore (_)

• Dot (.)

• Minus (-)

Jakarta Messaging providers may support additional characters to these, but applications which use
them may not be portable.

The Jakarta Messaging provider must allow a durable or non-durable subscription name to have up to
128 characters.
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Jakarta Messaging providers may support names longer than this, but applications which use longer
names may not be portable.

4.2.5. Topic management

Some products require that topics be statically defined with associated authorization control lists, and
so on; others don’t even have the concept of topic administration.

Jakarta Messaging does not define facilities for creating, administering, or deleting topics.

A special type of topic called a temporary topic is provided for creating a topic that is unique to a
particular connection. See Section 4.2.7 “Temporary topics” for more details.

4.2.6. Topic

A Topic object encapsulates a provider-specific topic name. It is the way a client specifies the identity of
a topic to Jakarta Messaging methods.

Many Jakarta Messaging providers group topics into hierarchies and provide various options for
subscribing to parts of the hierarchy. Jakarta Messaging places no restriction on what a Topic object
represents. It might be a leaf in a topic hierarchy or it might be a larger part of the hierarchy (for
subscribing to a general class of information).

The organization of topics and the granularity of subscriptions to them is an important part of a
pub/sub application’s architecture. Jakarta Messaging does not specify a policy for how this should be
done. If an application takes advantage of a provider-specific topic grouping mechanism, it should
document this. If the application is installed using a different provider, it is the job of the administrator
to construct an equivalent topic architecture and create equivalent Topic objects.

4.2.7. Temporary topics

A TemporaryTopic is a unique Topic object created for the duration of a JMSContext, Connection or
TopicConnection. It is a system defined Topic whose messages may be consumed only by the
connection that created it.

By definition, it does not make sense to create a durable subscription to a temporary topic. To do this is
a programming error that may or may not be detected by a Jakarta Messaging Provider.

See Section 6.2.2 “Creating temporary destinations” for more information.

4.2.8. Recovery and redelivery

Unacknowledged messages of a nondurable subscriber should be able to be recovered for the lifetime
of that nondurable subscriber. When a nondurable subscriber terminates, messages waiting for it will
probably be dropped by the Jakarta Messaging provider whether or not they have been acknowledged.

Only durable subscriptions are reliably able to recover unacknowledged messages.

4.2. Jakarta Messaging publish/subscribe model
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Sending a message to a topic with a delivery mode of PERSISTENT does not alter this model of recovery
and redelivery. To ensure delivery, a durable subscription should be used.

4.2.9. Administering subscriptions

Ideally, publishers and subscribers are dynamically registered by a provider when they are created.
From the client viewpoint this is always the case. From the administrator’s viewpoint, other tasks may
be needed to support the creation of publishers and subscribers.

The amount of resources allocated for message storage and the consequences of resource overflow are
not defined by Jakarta Messaging.

All Jakarta Messaging providers must be able to run Jakarta Messaging applications that dynamically
create and delete durable subscriptions. Some Jakarta Messaging providers may, in addition, provide
facilities to administratively configure durable subscriptions. If a durable subscription has been
administratively configured, it is valid for it to silently override the subscription specified by the client.

4.2.10. TopicRequestor

The legacy domain-specific API for pub/sub messaging provides a TopicRequestor helper class to
simplify making service requests.

The TopicRequestor constructor is given a non-transacted TopicSession and a destination topic. It
creates a TemporaryTopic for the responses and provides a request method that sends the request
message and waits for its reply.

This is a very basic request/reply abstraction which assumes the session is non-transacted with a
delivery mode of either AUTO_ACKNOWLEDGE or DUPS_OK_ACKNOWLEDGE. It is expected that most
applications will create less basic implementations.

There is no equivalent to this class for the classic or simplified APIs. Applications using these APIs are
expected to create their own implementations.

4.2.11. Reliability

When all messages for a topic must be received, a durable subscriber should be used. Jakarta
Messaging ensures that messages published while a durable subscriber is inactive are retained by
Jakarta Messaging and delivered when the subscriber subsequently becomes active.

Non-durable subscribers should only be used when missed messages are tolerable.

Table 4‑1 Pub/sub reliability

4.2. Jakarta Messaging publish/subscribe model
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How Published Non-Durable Subscriber Durable Subscriber

NON_PERSISTENT at-most-once

(missed if inactive)

at-most-once

PERSISTENT once-and-only-once

(missed if inactive)

once-and-only-once

4.2. Jakarta Messaging publish/subscribe model
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Chapter 5. Administered objects

5.1. Overview
Jakarta Messaging administered objects are objects containing Jakarta Messaging configuration
information that are created by a Jakarta Messaging administrator and later used by Jakarta Messaging
clients. They make it practical to administer Jakarta Messaging applications in the enterprise.

Although the interfaces for administered objects do not explicitly depend on JNDI, Jakarta Messaging
establishes the convention that Jakarta Messaging clients find them by looking them up in a namespace
using JNDI.

An administrator can place an administered object anywhere in a namespace. Jakarta Messaging does
not define a naming policy.

This strategy of partitioning Jakarta Messaging and administration provides several benefits:

• It hides provider-specific configuration details from Jakarta Messaging clients.

• It abstracts Jakarta Messaging administrative information into Java objects that are easily
organized and administered from a common management console.

• Since there will be JNDI providers for all popular naming services, this means Jakarta Messaging
providers can deliver one implementation of administered objects that will run everywhere.

An administered object should not hold on to any remote resources. Its lookup should not use remote
resources other than those used by JNDI itself.

Clients should think of administered objects as local Java objects. Looking them up should not have any
hidden side effects or use surprising amounts of local resources.

Jakarta Messaging defines two administered objects, Destination and ConnectionFactory.

It is expected that Jakarta Messaging providers will provide the tools an administrator needs to create
and configure administered objects in a JNDI namespace. Jakarta Messaging provider implementations
of administered objects should be both javax.naming.Referenceable and java.io.Serializable so that
they can be stored in all JNDI naming contexts. In addition, it is recommended that these
implementations follow the JavaBeansTM design patterns.

5.2. Destination
Jakarta Messaging does not define a standard address syntax. Although this was considered, it was
decided that the differences in address semantics between existing enterprise messaging products was
too wide to bridge with a single syntax. Instead, Jakarta Messaging defines the Destination object
which encapsulates provider-specific addresses.

5.1. Overview
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Since Destination is an administered object it may also contain provider-specific configuration
information in addition to its address.

Jakarta Messaging also supports a client’s use of provider-specific address names. See Section 6.2.3
“Creating Destination objects” for more information.

Destination objects support concurrent use.

5.3. Connection factories
A connection factory object encapsulates a set of connection configuration parameters that has been
defined by an administrator. A client uses it to create a connection with a Jakarta Messaging provider.

• The classic API uses connection factories of type ConnectionFactory.

• The simplified API uses connection factories of type ConnectionFactory.

• The domain-specific API for point-to-point messaging uses connection factories of type
QueueConnectionFactory.

• The domain-specified API for pub-sub messaging uses connection factories of type
TopicConnectionFactory.

Connection factory objects support concurrent use.

For information on how to use a connection factory to create a connection, see section 6.1
“Connections”.

5.3. Connection factories
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Chapter 6. Connecting to a Jakarta Messaging
provider

6.1. Connections
Jakarta Messaging uses the term connection to refer to a client’s active connection to its Jakarta
Messaging provider. It will typically allocate provider resources outside the Java virtual machine.

A connection is created using a connection factory. For more information about connection factories
see section 5.3 “Connection factories”.

A connection may be used to create one or more sessions. Sessions are used to send and consume
messages and are described in section 6.2 “Sessions”.

• In the classic API a connection is represented by a Connection object and is created using one of the
following methods on ConnectionFactory:

createConnection()

createConnection(String userName, String password)

A Connection object may be used to create separate Session objects. Connection objects support
concurrent use.

• In the simplified API a connection is represented by a JMSContext object and is created using one of
the following methods on ConnectionFactory.

createContext()

createContext(int sessionMode)

createContext(String userName, String password)

createContext(String userName, String password, int sessionMode)

A JMSContext represents both a connection and a session. Although a connection supports
concurrent use, a session does not. JMSContext objects therefore do not support concurrent use

• In the domain-specific API for point-to-point messaging a connection is represented by a
QueueConnection object and is created using one of the following methods on
QueueConnectionFactory:

createQueueConnection()

createQueueConnection(String userName, String password)

6.1. Connections
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A QueueConnection object may be used to create separate QueueSession objects. QueueConnection
objects support concurrent use.

• In the domain-specified API for pub-sub messaging a connection is represented by a
TopicConnection object and is created using one of the following methods on
TopicConnectionFactory:

createTopicConnection()

createTopicConnection(String userName, String password)

A TopicConnection object may be used to create separate TopicSession objects. TopicConnection
objects support concurrent use.

A connection serves several purposes:

• It encapsulates an open connection with a Jakarta Messaging provider. It typically represents an
open TCP/IP socket between a client and a provider’s service daemon.

• Its creation is when client authentication takes place.

• It can specify a unique client identifier.

• It provides ConnectionMetaData.

• It supports an optional ExceptionListener.

Due to the authentication and communication setup done when a connection is created, the objects
that represent a connection are relatively heavyweight Jakarta Messaging objects. Most clients will do
all their messaging with a single connection. Other more advanced applications may use several
connections. Jakarta Messaging does not architect a reason for using multiple connections (other than
when a client acts as a gateway between two different providers); however, there may be operational
reasons for doing so.

6.1.1. Authentication

When creating a connection, a client may specify its credentials as name/password.

If no credentials are specified, the current thread’s credentials are used. At this point, the JDK does not
define the concept of a thread’s default credentials; however, it is likely this will be defined in the near
future. For now, the identity of the user under which the Jakarta Messaging client is running should be
used.

6.1.2. Client identifier

The preferred way to assign a client’s client identifier is for it to be configured in a client-specific
ConnectionFactory and transparently assigned to the connection it creates. Alternatively, a client can
set a connection’s client identifier using a provider-specific value. The facility to explicitly set a
connection’s client identifier is not a mechanism for overriding the identifier that has been
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administratively configured. It is provided for the case where no administratively specified identifier
exists. If one does exist, an attempt to change it by setting it must throw an IllegalStateException.

An application may explicitly set a connection’s client identifier by calling the setClientID method on
the Connection, JMSContext, QueueConnection or TopicConnection object.

If a client explicitly sets a connection’s client identifier it must do so immediately after creating the
Connection, JMSContext, QueueConnection or TopicConnection and before any other action on this
object taken. After this point, setting the client identifier is a programming error that should throw an
IllegalStateException.

The purpose of client identifier is to associate a connection and its objects with a state maintained on
behalf of the client by a provider. By definition, the client state identified by a client identifier can be
‘in use’ by only one client at a time. A Jakarta Messaging provider must prevent concurrently executing
clients from using it.

This prevention may take the form of a JMSException being thrown when such use is attempted; it may
result in the offending client being blocked; or some other solution. A Jakarta Messaging provider must
ensure that such attempted ‘sharing’ of an individual client state does not result in messages being lost
or doubly processed.

The only use of a client identifier defined by Jakarta Messaging is its mandatory use in identifying an
unshared durable subscription or its optional use in identifying a shared durable or non-durable
subscription.

6.1.3. Connection setup

• In the classic API, a Jakarta Messaging client typically creates a Connection, one or more Session
objects, and a number of MessageProducer and MessageConsumer objects.

• In the simplified API, a Jakarta Messaging client typically creates a JMSContext and a number of
JMSProducer and JMSConsumer objects.

• In the domain-specific API for point-to-point messaging, a Jakarta Messaging client typically creates
a QueueConnection, one or more QueueSession objects, and a number of QueueSender and
QueueReceiver objects.

• In the domain-specific API for pub/sub messaging, a Jakarta Messaging client typically creates a
TopicConnection, one or more TopicSession objects, and a number of TopicPublisher and
TopicSubscriber objects.

6.1.4. Starting a connection

When a Connection, JMSContext, QueueConnection or TopicConnection is created, it is in stopped
mode. That means that no messages are being delivered to it.

In the case of a Connection, QueueConnection or TopicConnection it is typical to leave the connection
in stopped mode until setup is complete. At that point the start method is called and messages begin
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arriving at the connection’s consumers. This setup convention minimizes any client confusion that
may result from asynchronous message delivery while the client is still in the process of setting itself
up.

These objects can be started immediately and the setup can be done afterwards. Clients that do this
must be prepared to handle asynchronous message delivery while they are still in the process of
setting up.

In the case of a JMSContext the connection is started automatically when the first consumer is created.
Applications may disable this behaviour by calling setAutoStart(false) and then calling start() explicitly
when required.

Whether a connection is started or stopped only affects the use of a connection to receive messages. It
has no effect on the use of the connection to send messages. A connection may be used to send
messages irrespective of whether it is started or stopped.

It is important to note that clients rely on the fact that no messages will be delivered to a consumer
until its connection has been started. Jakarta Messaging Providers must ensure that this is the case.

6.1.5. Pausing delivery of incoming messages

A connection’s delivery of incoming messages can be temporarily stopped using its stop method. It can
be restarted using its start method. When stopped, delivery to all the connection’s consumer objects is
inhibited: synchronous receives block, and messages are not delivered to any message listeners.

Stopping a connection has no affect on its ability to send messages. Stopping a stopped connection and
starting a started connection are ignored.

A stop method call must not return until delivery of messages has paused. This means a client can rely
on the fact that none of its message listeners will be called and all threads of control waiting for
receive to return will not return with a message until the connection is restarted. The receive timers
for a stopped connection continue to advance so receives may time out and return a null message
while the connection is stopped.

If any message listeners are running when stop is invoked, stop must wait until all of them have
returned before it may return. While these message listeners are completing, they must have the full
services of the connection available to them.

If the stop method is called from a message listener on its own Connection or JMSContext, or on a
JMSContext that uses the same connection, then it will either fail and throw a
jakarta.jms.IllegalStateException (in the case of
Connection) or jakarta.jms.IllegalStateRuntimeException (in the case of JMSContext), or it will succeed
and stop the connection, blocking until all other message listeners that may have been running have
returned.

Since two alternative behaviors are permitted in this case, applications
should avoid calling stop from a message listener on its own Connection or JMSContext, or on a
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JMSContext that uses the same connection, because this is not portable.

6.1.6. ConnectionMetaData

All the objects that represent a connection provide a ConnectionMetaData object. This object provides
the latest version of Jakarta Messaging supported by the provider as well as the provider’s product
name and version.

It also provides a list of the Jakarta Messaging defined property names supported by the connection.

6.1.7. ExceptionListener

If a Jakarta Messaging provider detects a problem with a connection, it will inform the connection’s
ExceptionListener, if one has been registered. To retrieve an ExceptionListener, the Jakarta Messaging
provider calls the connection’s getExceptionListener() method. This method returns the
ExceptionListener for the connection. If no ExceptionListener is registered, the value null is returned.
The connection can then use the listener by calling the listener’s onException() method, passing it a
JMSException describing the problem.

This allows a client to be asynchronously notified of a problem. Some connections only consume
messages, so they would have no other way to learn their connection has failed.

A Connection serializes execution of its ExceptionListener.This means that if a connection encounters
multiple problems and therefore needs to call its ExceptionListener multiple times, then it will only
invoke onException from one thread at a time. However if the same ExceptionListener is registered
with multiple connections then it is undefined whether these connections could call onException from
different threads simultaneously.

A Jakarta Messaging provider should attempt to resolve connection problems itself prior to notifying
the client of them.

The exceptions delivered to ExceptionListener are those that have no other place to be reported. If an
exception is thrown on a Jakarta Messaging call it, by definition, must not be delivered to an
ExceptionListener (in other words, ExceptionListener is not for the purpose of monitoring all
exceptions thrown by a connection).

There is no restriction on the use of the Jakarta Messaging API by the listener’s onException method.
However since that method will only be called when there is a serious problem with the connection,
any attempt to use that connection may fail and cause exceptions.

6.1.8. Closing a connection

Since a provider typically allocates significant resources outside the JVM on behalf of a connection,
clients should close them when they are not needed. Relying on garbage collection to eventually
reclaim these resources may not be timely enough.

A close terminates all pending message receives on the connection’s session’s consumers. The receives
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may return with a message or null depending on whether there was a message or not available at the
time of the close.

Note that in this case, the message consumer will likely get an exception if it is attempting to use the
facilities of the now closed connection while processing its last message. A developer must take this
‘last message’ case into account when writing a message consumer. It bears repeating that the message
consumer cannot rely on a null return value to indicate this ‘last message’ case.

If one or more of the connection’s session’s message listeners is processing a message at the point
when connection close is invoked, all the facilities of the connection and its sessions must remain
available to those listeners until they return control to the Jakarta Messaging provider.

When connection close is invoked it should not return until message processing has been shut down in
an orderly fashion. This means that all message listeners that may have been running have returned,
and that all pending receives have returned.

Closing a Connection, QueueConnection or TopicConnection closes its constituent sessions, producers,
consumers or queue browsers. The connection close is sufficient to signal the Jakarta Messaging
provider that all resources for the connection should be released.

Closing a JMSContext closes the underlying session and any underlying producers and consumers. If
there are no other active (not closed) JMSContext objects using the underlying connection then this
method also closes the underlying connection.

If a message listener attempts to close its own connection (either by calling
close on a Connection object or by calling close on a JMSContext object which has no other active
JMSContext objects using the underlying connection) then it will either fail and throw a
jakarta.jms.IllegalStateException (in the case of Connection) or
jakarta.jms.IllegalStateRuntimeException (in the case of JMSContext), or it will succeed and close the
connection, blocking until all other message listeners that may have been running have returned, and
all pending receive calls have completed. If close succeeds and the acknowledge mode of the session is
set to AUTO_ACKNOWLEDGE, the current message will still be acknowledged automatically when the
onMessage call completes.

Since two alternative behaviors are permitted in this case, applications
should avoid calling close from a message listener on its own Connection
or JMSContext because this is not portable.

The Connection, JMSContext, QueueConnection and TopicConnection interfaces all extend the
java.lang.AutoCloseable interface. This means that applications which create these objects in a try-
with-resources statement do not need to call the close method when they are no longer needed. Instead
these objects will be closed automatically at the end of the statement. The use of a try-with-resources
statement also simplifies the handling of any exceptions thrown by the close method. See the Java
Tutorials[3] for more information about the try-with-resources statement.

Closing a connection must rollback the transactions in progress on its transacted sessions[4]. Closing a
connection does NOT force an acknowledge of client acknowledged sessions. Invoking the
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acknowledge method of a received message from a closed connection’s sessions must throw an
IllegalStateException. These semantics ensure that closing a connection does not cause messages to be
lost for queues and durable subscriptions which require reliable processing by a subsequent execution
of their Jakarta Messaging client.

Once a connection has been closed, an attempt to use it or its sessions or their message consumers and
producers must throw an IllegalStateException (calls to the close method of these objects must be
ignored). It is valid to continue to use message objects created or received via the connection with the
exception of a received message’s acknowledge method.

Closing a closed connection must NOT throw an exception.

6.2. Sessions
In Jakarta Messaging a session is a single-threaded context[5] for producing and consuming messages.
Although it may allocate provider resources outside the Java virtual machine, it is considered a
lightweight Jakarta Messaging object.

• In the classic API a session is represented by a Session object and is creating using one of the
following methods on Connection:

createSession()

createSession(boolean transacted, int acknowledgeMode)

createSession(int sessionMode)

• In the simplified API a connection and a session are represented by a single JMSContext object.
When a JMSContext is created the underlying session is created automatically.

• In the domain-specific API for point-to-point messaging a session is represented by a QueueSession
object and is created using the following method on QueueConnection:

createQueueSession(boolean transacted, int acknowledgeMode)

• In the domain-specified API for pub-sub messaging a session is represented by a TopicSession
object and is created using the following method on TopicConnection:

createTopicSession(boolean transacted, int acknowledgeMode)

A session serves several purposes:

• It is a factory for producer and consumer objects. These are described in chapter 7 “Sending
messages” and chapter 8 “Receiving messages”.

• It is a factory for TemporaryTopic and TemporaryQueue objects.

• It provides a way to create Queue or Topic objects for those clients that need to dynamically
manipulate provider-specific destination names.
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• It supplies provider-optimized message factories.

• It supports a single series of transactions that combine work spanning this session’s producers and
consumers into atomic units.

• It defines a serial order for the messages it consumes and the messages it produces.

• It retains messages it consumes until they have been acknowledged.

• It serializes execution of MessageListener objects registered with it.

• It is a factory for QueueBrowser objects.

• It provides the unsubscribe method for deleting durable topic subscriptions.

If there are messages that have been received from a queue but not acknowledged when a session
terminates, these messages must be retained and redelivered when a consumer next accesses the
queue.

If there are messages that have been received from a topic subscription but not acknowledged when a
session terminates, a durable subscriber must retain and redeliver them; a nondurable subscriber
need not do so.

6.2.1. Producer and consumer creation

A session can create and service multiple producer and consumer objects. See section 7 “Sending
messages” and section 8 “Receiving messages” for information on their creation and use.

Although a session may create multiple producers and consumers, they are restricted to serial use. In
effect, only a single logical thread of control can use them. This is explained in more detail later.

6.2.2. Creating temporary destinations

Although sessions are used to create temporary destinations, this is only for convenience. Their scope
is actually the entire connection. Their lifetime is that of their connection and any of the connection’s
sessions are allowed to create a consumer for them.

Temporary destinations (TemporaryQueue or TemporaryTopic objects) are destinations that are
system-generated uniquely for their connection. Only their own connection is allowed to create
consumer objects for them.

One typical use for a temporary destination is as the JMSReplyTo destination for service requests.

Each TemporaryQueue or TemporaryTopic object is unique. It cannot be copied.

Since temporary destinations may allocate resources outside the JVM, they should be deleted if they
are no longer needed. They will be automatically deleted when they are garbage collected or when
their connection is closed.
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6.2.3. Creating Destination objects

Most clients will use Destination objects that are Jakarta Messaging administered objects that they
have looked up via JNDI. This is the most portable approach.

Some specialized clients may need to create Destination objects by dynamically manufacturing one
using a provider specific destination name. Sessions provide a Jakarta Messaging provider-specific
method for doing this.

6.2.4. Optimized message implementations

A session provides the following methods to create messages: createMessage, createBytesMessage,
createMapMessage, createObjectMessage, createStreamMessage and createTextMessage.

These methods allow the Jakarta Messaging provider to create message implementations which are
optimized for that particular provider and allow the provider to minimize its overhead for handling
messages.

However the fact that these methods are provided on a session does not mean that messages must be
sent using a message producer created from the same session. Messages may be sent using any session,
not just the session used to create the message.

Furthermore, sessions must be capable of sending all Jakarta Messaging messages regardless of how
they may be implemented. See section 3.12 “Provider implementations of Jakarta Messaging message
interfaces”.

6.2.5. Threading restrictions on a session

Sessions are designed for serial use by one thread at a time. The only exception to this occurs during
the orderly shutdown of the session or its connection. See Section 6.1.8 “Closing a connection” and
Section 6.2.15 “Closing a session” for further details.

One typical use is to have a thread call receive() on a consumer, which blocks until a message arrives.
The thread may then use one or more of the session’s producer objects.

It is erroneous for a client to use a thread of control to attempt to synchronously receive a message if
there is already a client thread of control waiting to receive a message in the same session.

Another typical use is to have one thread set up a session by creating its producers and one or more
asynchronous consumers. In this case, the message producers are exclusively for the use of the
consumers’ message listeners. Since the session serializes execution of its consumers’ message
listeners, they can safely share the resources of their session.

If a connection is left in stopped mode while its sessions are being set up, a client does not have to deal
with messages arriving before the client is fully prepared to handle them. This is the preferred strategy
because it eliminates the possibility of unanticipated conflicts between setup and message processing.
It is possible to create and set up a session while a connection is receiving messages. In this case, more
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care is required to ensure that a session’s message producers, message consumers and message
listeners are created in the right order. For instance, a bad order may cause a MessageListener to use a
producer object that has yet to be created; or messages may arrive in the wrong order due to the order
in which MessageListener objects are registered.

If a client desires to have one thread producing messages while others consume them, the client should
use a separate session for its producing thread.

Once a connection has been started, all its sessions with a registered message listener are dedicated to
the thread of control that delivers messages to them. It is erroneous for client code to use such a
session from another thread of control. The only exception to this is the use of the consumer, session or
connection close method.

One consequence of the session’s single-thread-of-control restriction is that a session with message
listeners cannot also be used to synchronously receive messages. Either the session is dedicated to the
thread of control used for delivery to message listeners, or it is dedicated to a thread of control
initiated by client code. It is erroneous to attempt to combine both in the same session.

Another consequence is that a connection must be in stopped mode to set up a session with more than
one message listener. The reason is that when a connection is actively delivering messages, once the
first message listener for a session has been registered, the session is now controlled by the thread of
control that delivers messages to it. At this point a client thread of control cannot be used to further
configure the session.

It should be natural for most clients to partition their work into sessions. This model allows clients to
start simply and incrementally add message processing complexity as their need for concurrency
grows.

Since a JMSContext incorporates a session it is subject to the same threading restrictions as a Session.
For more information, and an exception to this, see section 6.2.6 “Threading restrictions on a
JMSContext”.

Additional threading restrictions apply to applications which perform an asynchronous send. See
section 7.3 “Asynchronous send” and in particular section 7.3.7 “Restrictions on threading”.

6.2.6. Threading restrictions on a JMSContext

Since a JMSContext incorporates a session it is subject to the same threading restrictions as a session.
These are described in section 6.2.5 “Threading restrictions on a session” which explains how a session
may only be used by one thread at a time.

The JMSContext method createContext does not use its underlying session and so is not subject to this
threading restriction.

This restriction also does not apply to the close method on JMSContext or JMSConsumer (since closing a
session or consumer from another thread is permitted).
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By default, when createConsumer or createDurableConsumer is used to create a JMSConsumer the
connection will automatically be started. This behaviour is described in section 6.1.4 “Starting a
connection”. It means that if setMessageListener is called to configure the asynchronous delivery of
messages then the JMSContext’s session will immediately become dedicated to the thread of control
that delivers messages to the listener and the application must not subsequently call methods on the
JMSContext from another thread of control. However this restriction does not apply to applications
which call setMessageListener to set a second or subsequent message listener. The Jakarta Messaging
provider will be responsible for ensuring that a second message listener may be safely configured even
if the underlying connection has been started.

6.2.7. Transactions

A session may be optionally specified as transacted. Each transacted session supports a single series of
transactions. Each transaction groups a set of produced messages and a set of consumed messages into
an atomic unit of work. In effect, transactions organize a session’s input message stream and output
message stream into a series of atomic units. When a transaction commits, its atomic unit of input is
acknowledged and its associated atomic unit of output is sent. If a transaction rollback is done, its
produced messages are destroyed and its consumed messages are automatically recovered. For more
information on session recovery see Section 6.2.10 “Message acknowledgment”.

A transaction is completed using either its session’s commit() or rollback() method. The completion of a
session’s current transaction automatically begins the next. The result is that a transacted session
always has a current transaction within which its work is done.

JTS or some other transaction monitor facility may be used to combine a session’s transaction with
transactions on other resources (databases, other Jakarta Messaging Sessions, etc.). Since Java
distributed transactions are controlled via the Jakarta Transactions transaction demarcation API, use
of the session’s commit and rollback methods in this context throws a Jakarta Messaging
TransactionInProgressException.

6.2.8. Distributed transactions

Jakarta Messaging does not require that a provider support distributed transactions; however, it does
define that if a provider supplies this support it should be done via the Java XAResource API.

A Jakarta Messaging provider may also be a distributed transaction monitor. If it is, it should provide
control of the transaction via the Jakarta Transactions API.

Although it is possible for a Jakarta Messaging client to handle distributed transactions directly, it is
recommended that Jakarta Messaging clients avoid doing this. Jakarta Messaging clients that use the
XA-based interfaces described in Chapter 11 “Jakarta Messaging application server facilities” may not
be portable across different Jakarta Messaging implementations, because these interfaces are optional.
Support for Jakarta Transactions in Jakarta Messaging is targeted at systems vendors who will be
integrating Jakarta Messaging into their application server products. See Chapter 11 “Jakarta
Messaging application server facilities” for more information.
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6.2.9. Message order

Jakarta Messaging clients need to understand when they can depend on message order and when they
cannot.

6.2.9.1. Order of message receipt

Messages consumed by a session define a serial order. This order is important because it defines the
effect of message acknowledgment. See Section 6.2.10 “Message acknowledgment” for more details.
The messages for each of a session’s consumers are interleaved in a session’s input message stream.

Jakarta Messaging defines that messages sent by a session to a destination must be received in the
order in which they were sent (see Section 6.2.9.2 “Order of message sends” for a few qualifications).
This defines a partial ordering constraint on a session’s input message stream.

Jakarta Messaging does not define order of message receipt across destinations or across a
destination’s messages sent from multiple sessions. This aspect of a session’s input message stream
order is timing-dependent. It is not under application control.

6.2.9.2. Order of message sends

Although clients loosely view the messages they produce within a session as forming a serial stream of
sent messages, the total ordering of this stream is not significant. The only ordering that is visible to
receiving clients is the order of messages a session sends to a particular destination. Several things can
affect this order:

• Messages of higher priority may jump ahead of previous lower-priority messages.

• Messages with a later delivery time may be delivered after messages with an earlier delivery time.

• A client may not receive a NON_PERSISTENT message due to a Jakarta Messaging provider failure.

• If both PERSISTENT and NON_PERSISTENT messages are sent to a destination, order is only
guaranteed within delivery mode. That is, a later NON_PERSISTENT message may arrive ahead of
an earlier PERSISTENT message; however, it will never arrive ahead of an earlier
NON_PERSISTENT message with the same priority.

• A client may use a transacted session to group its sent messages into atomic units (the producer
component of a Jakarta Messaging transaction). A transaction’s order of messages to a particular
destination is significant. The order of sent messages across destinations is not significant. See
Section 6.2.7 “Transactions” for more information.

6.2.10. Message acknowledgment

If a session is transacted, message acknowledgment is handled automatically by commit, and recovery
is handled automatically by rollback.

If a session is not transacted, there are three acknowledgment options and recovery is handled
manually:
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• DUPS_OK_ACKNOWLEDGE - This option instructs the session to lazily acknowledge the delivery of
messages. This is likely to result in the delivery of some duplicate messages if Jakarta Messaging
fails. It it should therefore only be used by consumers that are tolerant of duplicate messages. Its
benefit is the reduction of session overhead achieved by minimizing the work the session does to
prevent duplicates.

• AUTO_ACKNOWLEDGE - With this option, the session automatically acknowledges a client’s receipt
of a message when it has either successfully returned from a call to receive or the message listener
it has called to process the message successfully returns.

• CLIENT_ACKNOWLEDGE - With this option, a client acknowledges a message by calling the
message’s acknowledge method. Acknowledging a consumed message automatically acknowledges
the receipt of all messages that have been delivered by its session.

When CLIENT_ACKNOWLEDGE mode is used, a client may build up a large number of
unacknowledged messages while attempting to process them. A Jakarta Messaging provider should
provide administrators with a way to limit client over-run so that clients are not driven to resource
exhaustion and ensuing failure when some resource they are using is temporarily blocked.

A session’s recover method is used to stop a session and restart it with its first unacknowledged
message. In effect, the session’s series of delivered messages is reset to the point after its last
acknowledged message. The messages it now delivers may be different from those that were originally
delivered due to message expiration, the arrival of higher-priority messages, or the delivery of
messages which could not previously be delivered as they had not reached their specified delivery
time.

A session must set the JMSRedelivered header and increment the JMSXDeliveryCount property of
messages it redelivers due to a recovery.

6.2.11. Duplicate delivery of messages

A Jakarta Messaging provider must never deliver a second copy of an acknowledged message.

When a client uses the AUTO_ACKNOWLEDGE mode, it is not in direct control of message
acknowledgment. Since such clients cannot know for certain if a particular message has been
acknowledged, they must be prepared for redelivery of the last consumed message. This can be caused
by the client completing its work just prior to a failure that prevents the message acknowledgment
from occurring. Only a session’s last consumed message is subject to this ambiguity. The
JMSRedelivered message header field must be set for a message redelivered under these
circumstances, and the JMSXDeliveryCount property must be incremented.

6.2.12. Duplicate production of messages

Jakarta Messaging providers must never produce duplicate messages. This means that a client that
produces a message can rely on its Jakarta Messaging provider to ensure that consumers of the
message will receive it only once. No client error can cause a provider to duplicate a message.
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If a failure occurs between the time a client commits its work on a Session and the commit method
returns, the client cannot determine if the transaction was committed or rolled back. The same
ambiguity exists when a failure occurs between the non-transactional send of a PERSISTENT message
and the return from the sending method.

It is up to a Jakarta Messaging application to deal with this ambiguity. In some cases, this may cause a
client to produce functionally duplicate messages.

A message that is redelivered due to session recovery is not considered a duplicate message.

6.2.13. Serial execution of client code

Even though the Java language provides built-in support for multithreading, writing multithreaded
programs is still more difficult than writing single-threaded ones.

For this reason, Jakarta Messaging does not cause concurrent execution of client code unless a client
explicitly requests it. One way this is done is to define that a session serializes all asynchronous
delivery of messages.

To receive messages asynchronously, a client creates a consumer object (MessageConsumer,
JMSConsumer, QueueReceiver or TopicConsumer) and uses the setMessageListener method to register
with it an object that implements the Jakarta Messaging MessageListener interface. In effect, a session
uses a single thread to run all its message listeners. While the thread is busy executing one listener, all
other messages to be asynchronously delivered to the session must wait.

6.2.14. Concurrent message delivery

Clients that desire concurrent delivery can use multiple sessions. In effect, each session’s listener
thread runs concurrently. While a listener on one session is executing, a listener on another session
may also be executing.

6.2.15. Closing a session

Since a provider may allocate some resources on behalf of a session outside the JVM, clients should
close a session when it is not needed. Relying on garbage collection to eventually reclaim these
resources may not be timely enough. The same is true for any producer and consumer objects created
by a session.

The close methods on Session, QueueSession and TopicSession allow a session to be closed separately
from the connection used to create it.

The close method on JMSContext closes the underlying session. If there are no other active (not closed)
JMSContext objects using the underlying connection then it also closes the underlying connection.

Session close terminates all message processing on the session. It must handle the shutdown of
pending receives by the session’s consumers or a running message listener as described in section 6.1.8
“Closing a connection”.
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Session close is the only session method that may be invoked from a thread of control separate from
the one which is currently controlling the session.

When session close is invoked it should not return until its message processing has been shut down in
an orderly fashion. This means that none of its message listeners are running, and that if there is a
pending receive, it has returned with either null or a message.

If a message listener attempts to close its own session (either by calling
close on a Session object or by calling close on a JMSContext object)
then it will either fail and throw a jakarta.jms.IllegalStateException (in the case of Session) or
jakarta.jms.IllegalStateRuntimeException (in the case of JMSContext), or it will succeed and close the
session, blocking until any pending receive call in progress has completed. If close succeeds and the
acknowledge mode of the session is set to AUTO_ACKNOWLEDGE, the current message will still be
acknowledged automatically when the onMessage call completes.

Since two alternative behaviors are permitted in this case, applications should avoid calling close from
a message listener on its own Session or JMSContext because this is not portable.

When a session is closed, there is no need to close its constituent producers, consumers or queue
browsers. The session close is sufficient to signal the Jakarta Messaging provider that all resources for
the session should be released.

Note that closing a connection will cause any sessions created from it to be closed, so, although a
session should be closed when no longer needed, there is no need to close a session immediately prior
to closing its connection.

The Session, JMSContext, QueueSession and TopicSession interfaces all extend the
java.lang.AutoCloseable interface. This means that applications which create these objects in a try-
with-resources statement do not need to call the close method when they no longer needed. Instead
these objects will be closed automatically at the end of the statement. The use of a try-with-resources
statement also simplifies the handling of any exceptions thrown by the close method.

Closing a transacted session must rollback its transaction in progress. Closing a client-acknowledged
session does NOT force an acknowledge.

Once a session has been closed, an attempt to use it or its consumers and producers must throw an
IllegalStateException (calls to the close method of these objects must be ignored). It is valid to continue
to use message objects created or received via the session with the exception of a received message’s
acknowledge method.

Closing a closed session must NOT throw an exception.

[3] The Java Tutorials may be found at http://docs.oracle.com/javase/tutorial/index.html.
[4] The term ‘transacted session’ refers to the case where a session’s commit and rollback methods are used to
demarcate a transaction local to the session. In the case where a session’s work is coordinated by an external
transaction manager, a session’s commit and rollback methods are not used and the result of a closed session’s work is
determined later by the transaction manager.
[5] There are no restrictions on the number of threads that can use a session or any objects it creates. The restriction is
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that the resources of a session should not be used concurrently by multiple threads. It is up to the user to ensure that
this concurrency restriction is met. The simplest way to do this is to use one thread. In the case of asynchronous
delivery, use one thread for setup in stopped mode and then start asynchronous delivery. In more complex cases the
user must provide explicit synchronization.
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Chapter 7. Sending messages

7.1. Producers
A client application uses a producer to send messages to a Destination.

• In the classic API a producer is represented by a MessageProducer object and is created using the
method createProducer(Destination destination)on Session. The destination parameter specifies
the destination to which the producer will send messages.

If destination is set to null then the destination must be specified on every send operation. A typical
use for this style of producer is to send replies to requests using the request’s JMSReplyTo
destination.

• In the simplified API a producer is represented by a JMSProducer object and is created using the
method createProducer() on JMSContext. The destination must be specified on every send
operation.

• In the domain-specific API for point-to-point messaging a producer is represented by a
QueueSender object and is created using the method createSender(Queue queue) on QueueSession.
The queue parameter specifies the queue to which the producer will send messages. If queue is set
to null then the queue must be specified on every send operation.

• In the domain-specified API for pub-sub messaging a producer is represented by a TopicPublisher
object and is created using the method createPublisher(Topic topic)on TopicSession. The topic
parameter specifies the topic to which the producer will send messages. If topic is set to null then
the topic must be specified on every send operation.

A producer may be used to send a message either synchronously or asynchronously. For more details
see sections 7.2 “Synchronous send” and 7.3 “Asynchronous send”.

Each time a client creates a producer, it defines a new sequence of messages that have no ordering
relationship with the messages it has previously sent.

7.2. Synchronous send
• In the classic API the following methods on MessageProducer may be used to send a message

synchronously:
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send(Message message)

send(Message message, int deliveryMode, int priority, long timeToLive)

send(Destination destination, Message message, int deliveryMode, int
priority, long timeToLive)

send(Destination destination, Message message)

• In the simplified API the following method on JMSProducer may be used to send a message:

send(Destination destination, Message message)

The following methods on JMSProducer allow the application to supply the message body directly.
The Jakarta Messaging provider automatically creates a message of the appropriate type before
sending.

send(Destination destination, String body)

send(Destination destination, Map<String,Object> body)

send(Destination destination, byte[] body)

send(Destination destination, Serializable body)

send(Destination destination, String body)

All the send method on JMSProducer will send the message synchronously unless the JMSProducer
has been configured to perform an asynchronous send.

• In the domain-specific API for point-to-point messaging the following methods on QueueSender
may be used to send a message synchronously:

send(Message message)

send(Message message, int deliveryMode, int priority, long timeToLive)

send(Queue queue, Message message)

send(Queue queue, Message message, int deliveryMode, int priority, long
timeToLive)
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These are in addition to the methods inherited from MessageProducer and listed above.

• In the domain-specific API for pub/sub messaging the following methods on TopicPublisher may be
used to send a message synchronously:

publish(Message message)

publish(Message message, int deliveryMode, int priority, long
timeToLive)

publish(Topic topic, Message message)

publish(Topic topic, Message message, int deliveryMode, int priority,
long timeToLive)

These are in addition to the methods inherited from MessageProducer and listed above.

These methods will block until the message has been sent. If necessary the call will block until a
confirmation message has been received back from the Jakarta Messaging server.

7.3. Asynchronous send
Clients may alternatively send a message asynchronously. This permits the Jakarta Messaging provider
to perform part of the work involved in sending the message in a separate thread.

• In the classic API the following methods on MessageProducer may be used to send a message
asynchronously

send(Message message, CompletionListener completionListener)

send(Message message, int deliveryMode, int priority, long timeToLive,
CompletionListener completionListener)

send(Destination destination, Message message, CompletionListener
completionListener)

send(Destination destination, Message message, int deliveryMode, int
priority, long timeToLive, CompletionListener completionListener)

• In the simplified API a JMSProducer may be used to send a message asynchronously by using
calling the method setAsync(CompletionListener completionListener) on the JMSProducer prior to
calling one of the normal send methods listed in section 7.2 “Synchronous send”.

• In the domain-specific API for point-to-point messaging a QueueSender may be used to send a
message asynchronously using any of the methods inherited from MessageProducer and listed
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above.

• In the domain-specific API for pub/sub messaging a TopicPublisher may be used to send a message
asynchronously using any of the methods inherited from MessageProducer and listed above.

When the message has been successfully sent the Jakarta Messaging provider invokes the callback
method onCompletion on an application-specified CompletionListener object. Only when that callback
has been invoked can the application be sure that the message has been successfully sent with the
same degree of confidence as if a normal synchronous send had been performed. An application
which requires this degree of confidence must therefore wait for the callback to be invoked before
continuing.

The following information is intended to give an indication of how an asynchronous send would
typically be implemented.

In some Jakarta Messaging providers, a normal synchronous send involves sending the message to a
remote Jakarta Messaging server and then waiting for an acknowledgement to be received before
returning. It is expected that such a provider would implement an asynchronous send by sending the
message to the remote Jakarta Messaging server and then returning without waiting for an
acknowledgement. When the acknowledgement is received, the Jakarta Messaging provider would
notify the application by invoking the onCompletion method on the application-specified
CompletionListener object. If for some reason the acknowledgement is not received the Jakarta
Messaging provider would notify the application by invoking the CompletionListener’s onException
method.

In those cases where the Jakarta Messaging specification permits a lower level of reliability, a normal
synchronous send might not wait for an acknowledgement. In that case it is expected that an
asynchronous send would be similar to a synchronous send: the Jakarta Messaging provider would
send the message to the remote Jakarta Messaging server and then return without waiting for an
acknowledgement. However the Jakarta Messaging provider would still notify the application that the
send had completed by invoking the onCompletion method on the application-specified
CompletionListener object.

It is up to the Jakarta Messaging provider to decide exactly what is performed in the calling thread and
what, if anything, is performed asynchronously, so long as it satisfies the requirements given in the
following sections:

7.3.1. Quality of service

After the send operation has completed successfully, which means that the message has been
successfully sent with the same degree of confidence as if a normal synchronous send had been
performed, the Jakarta Messaging provider must invoke the CompletionListener’s onCompletion
method.The CompletionListener must not be invoked earlier than this.
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7.3.2. Exceptions

If an exception is encountered during the call to the send method then an appropriate exception
should be thrown in the thread that is calling the send method. In this case the Jakarta Messaging
provider must not invoke the CompletionListener’s onCompletion or onException method.

If an exception is encountered which cannot be thrown in the thread that is calling the send method
then the Jakarta Messaging provider must call the CompletionListener’s onException method.

In both cases if an exception occurs it is undefined whether or not the message was successfully sent.

7.3.3. Message order

If the same producer is used to send multiple messages then Jakarta Messaging message ordering
requirements (see section 6.2.9 “Message order”) must be satisfied. This applies even if a combination
of synchronous and asynchronous sends has been performed. The application is not required to wait
for an asynchronous send to complete before sending the next message.

7.3.4. Close, commit or rollback

If the application calls close to close the producer, session or connection then the Jakarta Messaging
provider must block until any incomplete send operations have been completed and all
CompletionListener callbacks have returned before closing the object and returning.

If the session is transacted (uses a local transaction) then when the commit or rollback method is called
the Jakarta Messaging provider must block until any incomplete send operations have been completed
and all CompletionListener callbacks have returned before performing the commit or rollback.

Incomplete sends should be allowed to complete normally unless an error occurs.

A CompletionListener callback method must not call close on its own producer, session (including
JMSContext) or connection or call commit or rollback on its own session. Doing so will cause the close,
commit or rollback to throw an IllegalStateException or IllegalStateRuntimeException (depending on
the method signature).

7.3.5. Restrictions on usage in Jakarta EE

An asynchronous send is not permitted in a Jakarta EE web container or Enterprise Beans container.

The following methods must therefore not be used in a Jakarta EE web container or Enterprise Beans
container:

• jakarta.jms.MessageProducer method send(Message message, CompletionListener
completionListener)

• jakarta.jms.MessageProducer method send(Message message, int deliveryMode, int priority, long
timeToLive, CompletionListener completionListener)
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• jakarta.jms.MessageProducer method send(Destination destination, Message message,
CompletionListener completionListener)

• jakarta.jms.MessageProducer method send(Destination destination, Message message, int
deliveryMode, int priority, long timeToLive, CompletionListener completionListener)

• jakarta.jms.JMSProducer method setAsync(CompletionListener completionListener)

All the methods listed in this section may throw a jakarta.jms.JMSException (if allowed by the method)
or a jakarta.jms.JMSRuntimeException (if not) when called by an application running in the Jakarta EE
web container or Enterprise Beans container. This is recommended but not required.

7.3.6. Message headers

Jakarta Messaging defines a number of message header fields and message properties which must be
set by the “Jakarta Messaging provider on send”. See section 3.4.11 “How message header values are
set” and section 3.5.9 “Jakarta Messaging defined properties”. If the send is asynchronous these fields
and properties may be accessed on the sending client only after the CompletionListener has been
invoked. If the CompletionListener’s onException method is called then the state of these message
header fields and properties is undefined. See also section 7.3.9 “Restrictions on the use of the Message
object” below.

7.3.7. Restrictions on threading

Applications that perform an asynchronous send must conform to the threading restrictions defined in
section 6.2.5 “Threading restrictions on a session”. This means that the session may be used by only
one thread at a time.

Setting a CompletionListener does not cause the session to be dedicated to the thread of control which
calls the CompletionListener. The application thread may therefore continue to use the session after
performing an asynchronous send. However the CompletionListener’s callback methods must not use
the session if an application thread might be using the session at the same time.

7.3.8. Use of the CompletionListener by the Jakarta Messaging provider

A session will only invoke one CompletionListener callback method at a time. For a given
MessageProducer or JMSContext, callbacks (both onCompletion and onException) will be performed in
the same order as the corresponding calls to the asynchronous send method.

A Jakarta Messaging provider must not invoke the CompletionListener from the thread that is calling
the asynchronous send method.

7.3.9. Restrictions on the use of the Message object

Applications which perform an asynchronous send must take account of the restriction that a Message
object is designed to be accessed by one logical thread of control at a time and does not support
concurrent use. See section 2.14 “Multi-threading”.
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After the send method has returned, the application must not attempt to read the headers, properties
or body of the Message object until the CompletionListener’s onCompletion or onException method has
been called. This is because the Jakarta Messaging provider may be modifying the Message object in
another thread during this time.

A Jakarta Messaging provider may throw a JMSException if the application attempts to access or
modify the Message object after the send method has returned and before the CompletionListener has
been invoked. If the Jakarta Messaging provider does not throw an exception then the behaviour is
undefined.

7.4. Setting message delivery options
A client can specify a producer’s delivery mode, priority, time-to-live and delivery delay. This sets these
values for all messages sent by a producer,

An application that uses the classic or domain-specific APIs may also specify the delivery mode,
priority, and time-to-live as parameters to the send method used to send the message. This overrides
any values set on the producer itself.

For more information on these various options see sections 7.7 “Message delivery mode”, Section “", 7.8
“Message time-to-live” and 7.9 “Message delivery delay”.

7.5. Setting message properties
Prior to sending a message, the client application may use methods on the Message object to set message
properties.

Applications using the simplified API may also set message properties on the JMSProducer. There are
nine methods on JMSProducer, all called setProperty. Any message properties set using these methods
will override any values that have been set directly on the message.

There are five send methods on JMSProducer that allow the application to supply the message body
directly without the need to create a Message object. When these methods are used the JMSProducer’s
setProperty methods provide the only way to set message properties.

There are five send methods on JMSProducer that allow the application to supply the message body
directly without the need to create a Message object. When these methods are used the only way to set
message properties is to call setProperty on JMSProducer prior to calling send.

7.6. Setting message headers
Prior to sending a message, the application may use methods on the Message object to set the
JMSCorrelationID, JMSReplyTo and JMSType message headers.

For more information see sections 3.4.5 “JMSCorrelationID” 3.4.6 “JMSReplyTo” and 3.4.8 “JMSType”
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above.

Applications using the simplified API may also set these message headers on the JMSProducer. Any
message headers set using these methods will override any values that have been set directly on the
message.

There are five send methods on JMSProducer that allow the application to supply the message body
directly without the need to create a Message object. When these methods are used the only way to set
these message headers is to call the appropriate methods on JMSProducer prior to calling send.

7.7. Message delivery mode
Jakarta Messaging supports two modes of message delivery.

• The NON_PERSISTENT mode is the lowest overhead delivery mode because it does not require that
the message be logged to stable storage. A Jakarta Messaging provider failure can cause a
NON_PERSISTENT message to be lost.

• The PERSISTENT mode instructs the Jakarta Messaging provider to take extra care to ensure the
message is not lost in transit due to a Jakarta Messaging provider failure.

A Jakarta Messaging provider must deliver a NON_PERSISTENT message at-most-once. This means it
may lose the message, but it must not deliver it twice.

A Jakarta Messaging provider must deliver a PERSISTENT message once-and-only-once. This means a
Jakarta Messaging provider failure must not cause it to be lost, and it must not deliver it twice.

PERSISTENT (once-and-only-once) and NON_PERSISTENT (at-most-once) message delivery are a way
for a Jakarta Messaging client to select between delivery techniques that may lose a messages if a
Jakarta Messaging provider dies and those which take extra effort to ensure that messages can survive
such a failure. There is typically a performance/reliability trade-off implied by this choice. When a
client selects the NON_PERSISTENT delivery mode, it is indicating that it values performance over
reliability; a selection of PERSISTENT reverses the requested trade-off.

The use of PERSISTENT messages does not guarantee that all messages are always delivered to every
eligible consumer. See Section 9.1 “Reliability” for further discussion on this topic.

An application may specify the required delivery mode using the method setDeliveryMode on the
producer object. This sets the delivery mode of all messages sent using that producer. An application
that uses the classic or domain-specific APIs may also specify the delivery mode as a parameter to the
send method used to send the message. Note however that the setDeliveryMode method on Message
cannot be used to set the delivery mode of a message.

See also section 3.4.2 “JMSDeliveryMode”.
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7.8. Message time-to-live
A client can specify a time-to-live value in milliseconds for each message it sends. This is used to
determine the message’s expiration time which is calculated by adding the time-to-live value specified
on the send method to the time the message was sent (for transacted sends, this is the time the client
sends the message, not the time the transaction is committed).

A Jakarta Messaging provider should do its best to accurately expire messages; however, Jakarta
Messaging does not define the accuracy provided. It is not acceptable to simply ignore time-to-live.

An application may specify the required time-to-live using the method setTimeToLive on the producer
object. This sets the time-to-live of all messages sent using that producer. An application that uses the
classic or domain-specific APIs may also specify the time-to-live as a parameter to the send method
used to send the message. Note however that the setTimeToLive method on Message cannot be used to
set the time-to-live of a message.

See also section 3.4.9 “JMSExpiration”.

7.9. Message delivery delay
A client can specify a delivery delay value in milliseconds for each message it sends. This is used to
determine the message’s delivery time which is calculated by adding the delivery delay value specified
on the send method to the time the message was sent (for transacted sends, this is the time the client
sends the message, not the time the transaction is committed).

A message’s delivery time is the earliest time when a Jakarta Messaging provider may deliver the
message to a consumer. The provider must not deliver messages before the delivery time has been
reached.

If a message is published to a topic, it will only be added to a durable or non-durable subscription on
that topic if the subscription exists at the time the message is sent.

An application may specify the required delivery delay using the method setDeliveryDelay on the
producer object. This sets the delivery delay of all messages sent using that producer. Note however
that the setDeliveryDelay method on Message cannot be used to set the delivery delay of a message.

See also section 3.4.13 “JMSDeliveryTime”.

7.10. JMSProducer method chaining
In the simplified API, the various setter methods on JMSProducer all return the JMSProducer object.
This allows method calls to be chained together, allowing a fluid programming style. For example:
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context.createProducer().
    setProperty("foo", "bar").
    setTimeToLive(10000).
    setDeliveryMode(NON_PERSISTENT).
    setDisableMessageTimestamp(true).
    send(dataQueue, body);

Instances of JMSProducer are intended to be lightweight objects which can be created freely and which
do not consume significant resources. JMSProducer therefore does not provide a close method.

7.10. JMSProducer method chaining
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Chapter 8. Receiving messages

8.1. Consumers
A client uses a consumer to receive messages from a destination.

• In the classic API a consumer is represented by a MessageConsumer object and is created using one
of several methods on Session.

• In the simplified API a consumer is represented by a JMSConsumer object and is created using one
of several methods on JMSContext.

• In the domain-specific API for point-to-point messaging a consumer is represented by a
QueueReceiver object and is created using one of several methods on QueueSession.

• In the domain-specified API for pub-sub messaging a consumer is represented by a TopicSubscriber
object and is created using one of several methods on TopicSession.

In all cases the destination from which the consumer will receive messages must be specified.

The methods used to create a consumer are described in sections 8.2 “Creating a consumer on a
queue” and 8.3 “Creating a consumer on a topic” below.

A consumer can be created with a message selector. This allows the client to restrict the messages
delivered to the consumer to those that match the selector. See Section 3.8.1 “Message selector” for
more information.

A client may either synchronously receive a consumer’s messages or have the provider
asynchronously deliver them as they arrive. See sections 8.5 “Receiving messages synchronously”, 8.6
“Receiving message bodies synchronously” and 8.7 “Receiving messages asynchronously” below.

8.2. Creating a consumer on a queue
The methods used to create a consumer on a queue vary depending on which API is being used. The
basic semantics of queues were introduced in section 4.1.2 “Queue semantics”.

• In the classic API a consumer on a queue is created using one of several createConsumer methods
on Session, all of which return a MessageConsumer.

• In the simplified API a consumer on a queue is created using one of several createConsumer
methods on JMSContext, all of which return a JMSConsumer.

• In the domain-specific API for point-to-point messaging a consumer on a queue is created using one
of several createReceiver methods on QueueSession, all of which return a QueueReceiver:

8.1. Consumers
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8.3. Creating a consumer on a topic
The methods used to create a consumer on a topic vary depending on what kind of topic subscription
is required, and which API is being used. The basic concepts of topics were introduced in section 4.2.2
“Topic semantics” and are explained in more detail below.

8.3.1. Unshared non-durable subscriptions

An unshared non-durable subscription is the simplest way to consume messages from a topic.

An unshared non-durable subscription is created, and a consumer object created on that subscription,
using one of the following methods:

• In the classic API, one of several createConsumer methods on Session. These return a
MessageConsumer object.

• In the simplified API, one of several createConsumer methods on JMSContext. These return a
JMSConsumer object.

• In the legacy domain-specific API for pub/sub, using one of several createSubscriber methods on
TopicSession. These return a TopicSubscriber object.

• In the legacy domain-specific API for pub/sub, using one of several createConsumer methods on
TopicSession. As these methods are inherited from Session they return a MessageConsumer object.

An unshared non-durable subscription does not have a name. Each call to createConsumer or
createSubscriber creates a new subscription.

An unshared non-durable subscription only exists for as long as the consumer remains active. This
means that any messages sent to the topic will only be added to the subscription for as long as the
consumer object exists and is not closed. The subscription is not persisted and will be deleted (together
with any undelivered messages associated with it) when the consumer is closed.

If a message selector is specified then only messages with properties matching the message selector
expression will be added to the subscription.

The noLocal parameter may be used to specify that messages published to the topic by its own
connection must not be added to the subscription.

Each unshared non-durable subscription has a single consumer. If the application needs to create
multiple consumers on the same subscription then a shared non-durable subscription should be used
instead. See section 8.3.2 “Shared non-durable subscriptions”.

If the application needs to be able to receive messages that were sent to the topic even when there was
no active consumer on it then a durable subscription should be used instead. See section 8.3.3
“Unshared durable subscriptions”.

8.3. Creating a consumer on a topic
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8.3.2. Shared non-durable subscriptions

A non-durable shared subscription is used by a client that needs to be able to share the work of
receiving messages from a non-durable topic subscription amongst multiple consumers. A non-durable
shared subscription may therefore have more than one consumer. Each message from the subscription
will be delivered to only one of the consumers on that subscription.

A shared non-durable subscription is created, and a consumer created on that subscription, using one
of the following methods:

• In the classic API, one of several createSharedConsumer methods on Session. These return a
MessageConsumer object.

• In the simplified API, one of several createSharedConsumer methods on JMSContext. These return
a JMSConsumer object.

• In the legacy domain-specific API for pub/sub, using one of several createSharedConsumer
methods on TopicSession. As these methods are inherited from Session they return a
MessageConsumer object.

The same methods may be used to create a consumer on an existing shared non-durable subscription.

A shared non-durable subscription is identified by a name specified by the client and by the client
identifier if set. If the client identifier was set when the shared non-durable subscription was first
created then a client which subsequently wishes to create a consumer on that shared non-durable
subscription must use the same client identifier.

A shared non-durable subscription only exists for as long as there is an active consumer on the
subscription. This means that any messages sent to the topic will only be added to the subscription
whilst a consumer object exists and is not closed. The subscription is not persisted and will be deleted
(together with any undelivered messages associated with it) when the last consumer on the
subscription is closed.

If there is an active (i.e. not closed) consumer on the shared non-durable subscription, and an attempt
is made to create an additional consumer, specifying the same name and client identifier (if set) but a
different topic or message selector, then a JMSException or JMSRuntimeException (depending on the
method signature) will be thrown.

If a message selector is specified then only messages with properties matching the message selector
expression will be added to the subscription.

There is no restriction to prevent a shared non-durable subscription and a durable subscription having
the same name. Such subscriptions would be completely separate.

See also section 6.1.2 “Client identifier”.
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8.3.3. Unshared durable subscriptions

A durable subscription is used by an application that needs to receive all the messages published on a
topic, including the ones published when there is no consumer associated with it. The Jakarta
Messaging provider retains a record of this durable subscription and ensures that all messages from
the topic’s publishers are retained until they are delivered to, and acknowledged by, a consumer on the
durable subscription or until they have expired.

An unshared durable subscription may have only one active (i.e. not closed) consumer at the same
time.

An unshared durable subscription is created, and a consumer created on that subscription, using one
of the following methods:

• In the classic API, one of several createDurableConsumer methods on Session. These return a
MessageConsumer object.

• In the simplified API, one of several createDurableConsumer methods on JMSContext. These return
a JMSConsumer object.

• In the legacy domain-specific API for pub/sub, one of several createDurableSubscriber methods on
Session and TopicSession. These return a TopicSubscriber object.

The same methods may be used to create a consumer on an existing unshared durable subscription.

An unshared durable subscription is identified by a name specified by the client and by the client
identifier, which must be set. A client which subsequently wishes to create a consumer on that
unshared durable subscription must use the same client identifier.

An unshared durable subscription is persisted and will continue to accumulate messages until it is
deleted using the unsubscribe method on the Session, JMSContext or TopicSession. It is erroneous for a
client to delete a durable subscription while it has an active consumer or while a message received
from it is part of a current transaction or has not been acknowledged in the session.

If there is an active (i.e. not closed) consumer on the unshared durable subscription, and an attempt is
made to create an additional consumer, specifying the same name and client identifier, then a
JMSException or JMSRuntimeException (depending on the method signature) will be thrown.

If there is no active (i.e. not closed) consumer on the unshared durable subscription, and an attempt is
made to create a new consumer on that unshared durable subscription, specifying the same name and
client identifier but a different topic, message selector or noLocal value, then this is equivalent to
unsubscribing (deleting) the old one and creating a new one.

A shared durable subscription and an unshared durable subscription may not have the same name
and client identifier. If the application calls one of the createDurableConsumer or
createDurableSubscriber methods, and a shared durable subscription already exists with the same
name and client identifier, then a JMSException or JMSRuntimeException (depending on the method
signature) will be thrown.

8.3. Creating a consumer on a topic

80    Jakarta Messaging Final



If a message selector is specified then only messages with properties matching the message selector
expression will be added to the subscription.

The noLocal parameter may be used to specify that messages published to the topic by the Session,
JMSContext or TopicSession’s own connection, or any other connection with the same client identifier,
will not be added to the durable subscription.

There is no restriction to prevent a durable subscription and a shared non-durable subscription having
the same name. Such subscriptions would be completely separate.

See also section 6.1.2 “Client identifier”.

8.3.4. Shared durable subscriptions

A durable subscription is used by an application that needs to receive all the messages published on a
topic, including the ones published when there is no consumer associated with it. The Jakarta
Messaging provider retains a record of this durable subscription and ensures that all messages from
the topic’s publishers are retained until they are delivered to, and acknowledged by, a consumer on the
durable subscription or until they have expired.

A shared non-durable subscription is used by a client that needs to be able to share the work of
receiving messages from a durable subscription amongst multiple consumers. A shared durable
subscription may therefore have more than one consumer. Each message from the subscription will be
delivered to only one of the consumers on that subscription.

A shared durable subscription is created, and a consumer created on that subscription, using one of
the following methods:

• In the classic API, one of several createSharedDurableConsumer methods on Session. These return
a MessageConsumer object.

• In the simplified API, one of several createSharedDurableConsumer methods on JMSContext. These
return a JMSConsumer object.

• In the legacy domain-specific API for pub/sub, using one of several createSharedDurableConsumer
methods on JMSContext return a JMSConsumer.

The same methods may be used to create a consumer on an existing shared durable subscription.

A shared durable subscription is identified by a name specified by the client and by the client identifier
if set. If the client identifier was set when the shared durable subscription was first created then a
client which subsequently wishes to create a consumer on that shared durable subscription must use
the same client identifier.

A durable subscription is persisted and will continue to accumulate messages until it is deleted using
the unsubscribe method on the Session, TopicSession or JMSContext. It is erroneous for a client to
delete a durable subscription while it has an active consumer or while a message received from it is
part of a current transaction or has not been acknowledged in the session.

8.3. Creating a consumer on a topic
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If there are no active (i.e. not closed) consumers on the shared durable subscription, and an attempt is
made to create a new consumer, specifying the same name and client identifier (if set) but a different
topic or message selector, then this is equivalent to unsubscribing (deleting) the old one and creating a
new one.

If there is an active (i.e. not closed) consumer on the shared durable subscription, and an attempt is
made to create an additional consumer, specifying the same name and client identifier (if set) but a
different topic or message selector, then a JMSException or JMSRuntimeException (depending on the
method signature) will be thrown.

A shared durable subscription and an unshared durable subscription may not have the same name
and client identifier. If the application calls one of the createSharedDurableConsumer methods, and an
unshared durable subscription already exists with the same name and client identifier, then a
JMSException or JMSRuntimeException is thrown.

If a message selector is specified then only messages with properties matching the message selector
expression will be added to the subscription.

There is no restriction to prevent a durable subscription and a shared non-durable subscription having
the same name. Such subscriptions would be completely separate.

See also section 6.1.2 “Client identifier”.

8.4. Starting message delivery
An application using the classic API to consume messages needs to call the connection’s start method to
start delivery of incoming messages. It may temporarily suspend delivery by calling stop, after which a
call to start will restart delivery. This is described in section 6.1.3 “Connection setup”.

The simplified API provides corresponding start and stop methods on JMSContext. The start method
will be called automatically when createConsumer or createDurableConsumer are called on the
JMSContext object. This means there is no need for the application to call start when the consumer is
first established. As with the classic API, an application may temporarily suspend delivery by calling
stop, after which a call to start will restart delivery.

Sometimes an application will need the connection to remain in stopped mode until setup is complete
and not commence message delivery until the start method is explicitly called, as with the classic API.
This can be configured by calling setAutoStart(false) on the JMSContext prior to calling
createConsumer or createDurableConsumer.

8.5. Receiving messages synchronously
A client application can request the next message from a consumer by callinge receive, receive(long
timeout) or receiveNoWait methods. These methods return a Message object.

Table 8‑1 MessageConsumer,JMSConsumer, QueueReceiver and TopicSubscriber methods to receive a
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message synchronously

Message receive (); Returns the next message produced for this
JMSConsumer

Message receive (
long timeout);

Returns the next message produced for this
JMSConsumer that arrives within the specified
timeout period

Message receiveNoWait(); Returns the next message produced for this
JMSConsumer if one is immediately available

8.6. Receiving message bodies synchronously
A client application using the simplified API can use the following methods on JMSConsumer to receive
a message body directly.

Table 8‑2 JMSConsumer methods to receive a message body synchronously

<T> T receiveBody(
Class<T> c);

Receives the next message produced for this
JMSConsumer and returns its body as an object of
the specified type

<T> T receiveBody(
Class<T> c,
long timeout);

Receives the next message produced for this
JMSConsumer that arrives within the specified
timeout period, and returns its body as an object
of the specified type

<T> T receiveBodyNoWait(
Class<T> c);

Receives the next message produced for this
JMSConsumer if one is immediately available and
returns its body as an object of the specified type

These methods may be used to receive any type of message except for StreamMessage and Message, so
long as the message has a body which is capable of being assigned to the specified type. This means
that the specified class or interface must either be the same as, or a superclass or superinterface of, the
class of the message body. If the message is not one of the supported types, or its body cannot be
assigned to the specified type, or it has no body, then a MessageFormatRuntimeException is thrown.

These methods do not give access to the message headers or properties (such as the JMSRedelivered
message header field or the JMSXDeliveryCount message property) and should only be used if the
application has no need to access them.

If the next message is expected to be a TextMessage then this should be set to String.class or another
class to which a String is assignable.

If the next message is expected to be a ObjectMessage then this should be set to
java.io.Serializable.class or another class to which the body is assignable.

8.6. Receiving message bodies synchronously
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If the next message is expected to be a MapMessage then this should be set to java.util.Map.class (or
java.lang.Object).

If the next message is expected to be a BytesMessage then this should be set to byte[].class (or
java.lang.Object).

The result of this method throwing a MessageFormatRuntimeException depends on the session mode:

• AUTO_ACKNOWLEDGE or DUPS_OK_ACKNOWLEDGE: The Jakarta Messaging provider will behave
as if the unsuccessful call to receiveBody or receiveBodyNoWait had not occurred. The message
will be delivered again before any subsequent messages.

This is not considered to be redelivery and does not cause the JMSRedelivered message header field
to be set or the JMSXDeliveryCount message property to be incremented.

• CLIENT_ACKNOWLEDGE: The Jakarta Messaging provider will behave as if the call to receiveBody
or receiveBodyNoWait had been successful and will not deliver the message again.

As with any message that is delivered with a session mode of CLIENT_ACKNOWLEDGE, the message
will not be acknowledged until acknowledge is called on the JMSContext. If an application wishes to
have the failed message redelivered, it must call recover on the JMSContext. The redelivered
message’s JMSRedelivered message header field will be set and its JMSXDeliveryCount message
property will be incremented.

• Transacted session: The Jakarta Messaging provider will behave as if the call to receiveBody or
receiveBodyNoWait had been successful and will not deliver the message again.

As with any message that is delivered in a transacted session, the transaction will remain
uncommitted until the transaction is committed or rolled back by the application. If an application
wishes to have the failed message redelivered, it must roll back the transaction. The redelivered
message’s JMSRedelivered message header field will be set and its JMSXDeliveryCount message
property will be incremented.

8.7. Receiving messages asynchronously
A client can register an object that implements the Jakarta Messaging MessageListener interface with a
consumer. As messages arrive for the consumer, the provider delivers them by calling the listener’s
onMessage method.

It is possible for a listener to throw a RuntimeException; however, this is considered a client
programming error. Well behaved listeners should catch such exceptions and attempt to divert
messages causing them to some form of application-specific ‘unprocessable message’ destination.

The result of a listener throwing a RuntimeException depends on the session’s acknowledgment mode.

• AUTO_ACKNOWLEDGE or DUPS_OK_ACKNOWLEDGE - the message will be immediately
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redelivered. The number of times a Jakarta Messaging provider will redeliver the same message
before giving up is provider-dependent. The JMSRedelivered message header field will be set, and
the JMSXDeliveryCount message property incremented, for a message redelivered under these
circumstances.

• CLIENT_ACKNOWLEDGE - the next message for the listener is delivered. If a client wishes to have
the previous unacknowledged message redelivered, it must manually recover the session.

• Transacted Session - the next message for the listener is delivered. The client can either commit or
roll back the session (in other words, a RuntimeException does not automatically rollback the
session).

Jakarta Messaging providers should flag clients with message listeners that are throwing
RuntimeException as possibly malfunctioning.

See Section 6.2.13 “Serial execution of client code” for information about how onMessage calls are
serialized by a session.

8.8. Closing a consumer
The close methods on MessageConsumer, JMSConsumer, QueueReceiver and TopicSubscriber allow a
consumer to be closed separately from the session or connection used to create it.

Closing a consumer terminates the delivery of messages to the consumer.

close is the only method on a consumer that may be invoked from a thread of control separate from
the one which is currently controlling the session.

If close is called in one thread whilst another thread is calling receive on the same consumer then the
call to close must block until the receive call has completed. A blocked receive call returns null when
the consumer is closed.

If close is called in one thread whilst a message listener for this consumer is in progress in another
thread then the call to close must block until the message listener has completed.

If close is called from a message listener’s onMessage method on its own consumer then after this
method returns the onMessage method must be allowed to complete normally.

Closing a consumer has no effect on the acknowledgement of messages delivered to the application, or
on any transaction in progress. This is because message acknowledgement and transactions are
functions of the session, not the consumer.

• If the session mode is AUTO_ACKNOWLEDGE or DUPS_OK_ACKNOWLEDGE then any messages
delivered to the application will be automatically acknowledged as normal.

• If the session mode is CLIENT_ACKNOWLEDGE then any messages delivered to the application may
be acknowledged by calling acknowledge in the normal way. It makes no difference whether this
occurs before or after the consumer is closed.

8.8. Closing a consumer
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• If the session is transacted then the application may commit or rollback the transaction as normal.
It makes no difference whether this occurs before or after the consumer is closed.

8.8. Closing a consumer
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Chapter 9. Other Jakarta Messaging facilities

9.1. Reliability
Most clients should use producers that produce PERSISTENT messages. This ensures once-and-only-
once message delivery for messages delivered from a queue or a durable subscription.

In some cases, an application may only require at-most-once message delivery for some of its
messages. This is accomplished by publishing NON_PERSISTENT messages. These messages typically
have lower overhead; however, they may be lost if a Jakarta Messaging provider fails. Both
PERSISTENT and NON_PERSISTENT messages can be published to the same destination.

Normally, a consumer fully processes each message before acknowledging its receipt to Jakarta
Messaging. This ensures that Jakarta Messaging does not discard a partially processed message due to
machine failure, etc. A consumer accomplishes this by using either a transacted or
CLIENT_ACKNOWLEDGE session. Unacknowledged messages redelivered due to system failure must
have the JMSRedelivered message header field set, and the JMSXDeliveryCount incremented, by the
Jakarta Messaging provider, as described in sections 3.4.7 “JMSRedelivered” and 3.5.11
“JMSXDeliveryCount”

If a NON_PERSISTENT message is delivered to a durable subscription or a queue, delivery is not
guaranteed if the durable subscription becomes inactive (that is, if it has no current subscriber) or if
the Jakarta Messaging provider is shut down and later restarted.

It is expected that important messages will be produced with a PERSISTENT delivery mode within a
transaction and will be consumed within a transaction from a nontemporary queue or a durable
subscription.

When this is done, applications have the highest level of assurance that a message has been properly
produced, reliably delivered, and accurately consumed. Non-transactional production and
consumption can also achieve the same level of assurance; however, this requires careful
programming.

A Jakarta Messaging provider may have resource restrictions that limit the number of messages that
can be held for high-volume destinations or non-responsive clients. If messages are dropped due to
resource limits, this is usually a serious administrative issue that needs attention. Correct functioning
of Jakarta Messaging requires that clients are responsive and that adequate resources to service them
are available.

Once-and-only-once message delivery, as described in this specification, has the important caveat that it
does not cover message destruction due to message expiration or other administrative destruction
criteria. It also does not cover loss due to resource restrictions. Configuration of adequate resources and
processing power for Jakarta Messaging applications is the job of administrators, who must be aware of
their Jakarta Messaging provider’s reliability features.

9.1. Reliability
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NON_PERSISTENT messages, nondurable subscriptions, and temporary destinations are by definition
unreliable. A Jakarta Messaging provider shutdown or failure will likely cause the loss of
NON_PERSISTENT messages and the loss of messages held by temporary destinations and nondurable
subscriptions. The termination of an application will likely cause the loss of messages held by
nondurable subscriptions and temporary destinations of the application.

9.2. Method inheritance across messaging domains
When Jakarta Messaging 1.1 unified the domain-specific APIs for point-to-point and pub/sub messaging
into a single “unified” API (now referred to as the “classic” API), some methods that are not
appropriate to a messaging domain became inherited by the domain-specific interfaces. For example,
the Session interface has the method createBrowser. Since TopicSession inherits from the Session
interface, TopicSession inherits the createBrowser method, though that method must not be used by a
topic, as topics do not support queue browsers. Table 9‑1outlines these instances.

If an application attempts to call any of the methods listed, the Jakarta Messaging provider must throw
an IllegalStateException.

Table 9‑1 methods that throw an IllegalStateException

Interface Method

QueueConnection createSharedConnectionConsumer

createDurableConnectionConsumer

createSharedDurableConnectionConsumer

QueueSession createDurableSubscriber

createDurableConsumer

createSharedConsumer

createSharedDurableConsumer

createTemporaryTopic

createTopic

unsubscribe

TopicSession createBrowser

createQueue

createTemporaryQueue

9.2. Method inheritance across messaging domains
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Chapter 10. Jakarta Messaging exceptions

10.1. Overview
This chapter provides an overview of Jakarta Messaging exception handling and defines the standard
Jakarta Messaging exceptions.

10.2. JMSException and JMSRuntimeException
Jakarta Messaging defines two sets of exceptions:

• JMSException is the base class for all checked exceptions

• JMSRuntimeException is the base class for all unchecked exceptions.

In general, methods on interfaces defined in Jakarta Messaging 1.1 and earlier throw checked
exceptions, whilst methods on the JMSContext, JMSProducer and JMSConsumer interfaces that were
defined for the simplified API throw unchecked exceptions.

For those methods which throw checked exceptions, catching JMSException provides a generic way of
handling all exceptions thrown by Jakarta Messaging.

Similarly, for those methods which throw unchecked exceptions only, catching JMSRuntimeException
provides a generic way of handling all exceptions thrown by Jakarta Messaging. The Java language
does not require unchecked exceptions to be explicitly caught by the application.

JMSException and JMSRuntimeException provide the following information:

• A provider-specific string describing the error - This string is the standard Java exception message,
and is available via getMessage().

• A provider-specific string error code

• A reference to another exception - Often a Jakarta Messaging exception will be the result of a lower
level problem. If appropriate, this lower level exception can be linked to the Jakarta Messaging
exception.

Methods which throw checked exceptions include only JMSException in their signatures. Jakarta
Messaging methods can throw any Jakarta Messaging standard exception as well as any Jakarta
Messaging provider specific exception. The javadoc for these methods documents only the
mandatory exception cases.

Methods which only throw unchecked exceptions do not include any exception in their signature. The
javadoc for these methods documents the mandatory exception cases.

10.1. Overview
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10.3. Standard exceptions
In addition to JMSException and JMSRuntimeException, Jakarta Messaging defines several additional
exceptions that standardize the reporting of basic error conditions.

There are only a few cases where Jakarta Messaging mandates that a specific Jakarta Messaging
exception must be thrown. These cases are indicated by the words must be in the exception
description. These cases are the only ones on which client logic should depend on a specific problem
resulting in a specific Jakarta Messaging exception being thrown.

In the remainder of cases, it is strongly suggested that Jakarta Messaging providers use one of the
standard exceptions where possible. Jakarta Messaging providers may also derive provider-specific
exceptions from these if needed.

Jakarta Messaging defines the following standard exceptions. In most cases there is a checked
exception (a subclass of JMSException) and a corresponding unchecked exception (a subclass of
JMSRuntimeException). The unchecked version may only be thrown on those methods whose method
signature does not permit the checked version to be thrown.

• IllegalStateException and IllegalStateRuntimeException. These exceptions are thrown when a
method is invoked at an illegal or inappropriate time or if the provider is not in an appropriate
state for the requested operation. For example, IllegalStateException must be thrown if
Session.commit() is called on a non-transacted session. IllegalStateException also must be called
when a domain inappropriate method is called, such as calling TopicSession.createBrowser().

• JMSSecurityException and JMSSecurityRuntimeException: These exceptions must be thrown when
a provider rejects a user name/password submitted by a client. They may also be thrown for any
case where a security restriction prevents a method from completing.

• InvalidClientIDException and InvalidClientIDRuntimeException: These exceptions must be thrown
when a client attempts to set a connection’s client identifier to a value that is rejected by a
provider.

• InvalidDestinationException and InvalidDestinationRuntimeException: These exceptions must be
thrown when a destination is either not understood by a provider or is no longer valid.

• InvalidSelectorException and InvalidSelectorRuntimeException: These exceptions must be thrown
when a Jakarta Messaging client attempts to give a provider a message selector with invalid syntax.

• MessageEOFException: This exception must be thrown when an unexpected end of stream has
been reached when a StreamMessage or BytesMessage is being read.

• MessageFormatException and MessageFormatRuntimeException: These exceptions must be
thrown when a Jakarta Messaging client attempts to use a data type not supported by a message or
attempts to read data in a message as the wrong type. They must also be thrown when equivalent
type errors are made with message property values. For example, a MessageFormatException must
be thrown if StreamMessage.writeObject() is given an unsupported class or if
StreamMessage.readShort() is used to read a boolean value. These exceptions also must be thrown
if a provider is given a type of message it cannot accept. Note that the special case of a failure
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caused by attempting to read improperly formatted String data as numeric values must throw the
java.lang.NumberFormatException.

• MessageNotReadableException: This exception must be thrown when a Jakarta Messaging client
attempts to read a write-only message.

• MessageNotWriteableException and MessageNotWriteableRuntimeException: These exceptions
must be thrown when a Jakarta Messaging client attempts to write to a read-only message.

• ResourceAllocationException and ResourceAllocationRuntimeException: This exception is thrown
when a provider is unable to allocate the resources required by a method. For example, this
exception should be thrown when a call to createTopicConnection fails due to lack of Jakarta
Messaging provider resources.

• TransactionInProgressException and TransactionInProgressRuntimeException: These exceptions
are thrown when an operation is invalid because a transaction is in progress. For instance,
attempting to call Session.commit() when a session is part of a distributed transaction should throw
a TransactionInProgressException.

• TransactionRolledBackException and TransactionRolledBackRuntimeException: A
TransactionRolledBackException exception must be thrown when a call to Session.commit() results
in a rollback of the current transaction. A TransactionRolledBackRuntimeException must be
thrown when a call to JMSContext.commit() results in a rollback of the current transaction

10.3. Standard exceptions

Final Jakarta Messaging    91



Chapter 11. Jakarta Messaging application
server facilities

11.1. Overview
This chapter describes Jakarta Messaging facilities for concurrent processing of a subscription’s
messages. It also defines how a Jakarta Messaging provider supplies Jakarta Transactions aware
sessions. These facilities are primarily intended for the use of the Jakarta Messaging provider.

If Jakarta Messaging clients use the Jakarta Transactions aware facilities the client program may be
non-portable code, because Jakarta Messaging providers are not required to support these interfaces.

The facilities described in this chapter are a special category of Jakarta Messaging. They are optional
and might only be supported by some Jakarta Messaging providers.

11.2. Concurrent processing of a subscription’s messages
Jakarta Messaging provides a special facility for creating a consumer that can concurrently consume
messages.

This facility partitions the work into three roles:

• Jakarta Messaging provider - its role is to deliver the messages.

• Application Server - its role is to create the consumer and manage the threads used by the
concurrent MessageListener objects.

• Application - its role is to define a subscription with a destination and optionally a message selector
and provide a single threaded MessageListener class to consume its messages. An application
server will construct multiple objects of this class to concurrently consume messages.

This facility requires the use of the classic API or the domain-specific APIs. It is not available in the
simplified API. However since this facility is intended for use by application servers only this
restriction does not affect applications.

11.2.1. Session

The Session, QueueSession and TopicSession objects provide the following methods for use by
application servers:

• setMessageListener() and getMessageListener() - a session’s MessageListener consumes messages
that have been assigned to the session by a ConnectionConsumer, as described in the next few
paragraphs.

• run() - causes the messages assigned to its session by a ConnectionConsumer to be serially
processed by the session’s MessageListener. When the listener returns from processing the last
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message, run() returns.

An application server would typically be given a MessageListener class that contained the single
threaded code written by an application programmer to process messages. It would also be given the
destination and message selector that specified the messages the listener was to consume.

An application server would take care of creating the Jakarta Messaging connection,
ConnectionConsumer, and session objects it needs to handle message processing. It would create as
many MessageListener instances as it needed and register each with its own session.

Since many listeners will need to use the services of its session, the listener is likely to require that its
session be passed to it as a constructor parameter.

11.2.2. ServerSession

A ServerSession is an object implemented by an application server. It is used by an application server
to associate a thread with a Jakarta Messaging session.

A ServerSession implements two methods:

• getSession() - returns the ServerSession’s Jakarta Messaging session.

• start() - starts the execution of the ServerSession thread and results in the execution of the
associated Jakarta Messaging session’s run method.

11.2.3. ServerSessionPool

A ServerSessionPool is an object implemented by an application server to provide a pool of
ServerSession objects for processing the messages of a ConnectionConsumer.

Its only method is getServerSession(). This removes a ServerSession from the pool and gives it to the
caller (which is assumed to be a ConnectionConsumer) to use for consuming one or more messages.

Jakarta Messaging does not architect how the pool is implemented. It could be a static pool of
ServerSession objects or it could use a sophisticated algorithm to dynamically create ServerSession
objects as needed.

If the ServerSessionPool is out of ServerSession objects, the getServerSession() method may block. If a
ConnectionConsumer is blocked, it cannot deliver new messages until a ServerSession is eventually
returned.

11.2.4. ConnectionConsumer

For application servers, the Connection, QueueConnection and TopicConnection objects provide a
special method createConnectionConsumer for creating a ConnectionConsumer. The messages it is to
consume are specified by a destination and a message selector. In addition, a ConnectionConsumer
must be given a ServerSessionPool to use for processing its messages. A maxMessages value is specified
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to limit the number of messages a ConnectionConsumer may load at one time into a ServerSession’s
Session.

Normally, when traffic is light, a ConnectionConsumer gets a ServerSession from its pool; loads its
Session with a single message; and, starts it. As traffic picks up, messages can back up. If this happens,
a ConnectionConsumer can load each Session with more than one message. This reduces the thread
context switches and minimizes resource use at the expense of some serialization of a message
processing.

11.2.5. How a ConnectionConsumer uses a ServerSession

A ConnectionConsumer implemented by a Jakarta Messaging provider uses a ServerSession to process
one or more messages that have arrived. It does this as follows:

1. It gets a ServerSession from the its ServerSessionPool

2. It gets the ServerSession’s session

3. It loads the session with one or more messages

4. It then starts the ServerSession to consume these messages

A ConnectionConsumer for a Connection will expect to load its messages into a Session. A
ConnectionConsumer for a QueueConnection will expect to load its messages into a QueueSession, as
one for a TopicConnection would expect to load a TopicSession.

Note that Jakarta Messaging does not architect how the ConnectionConsumer loads the session with
messages. Since both the ConnectionConsumer and session are implemented by the same Jakarta
Messaging provider, they can accomplish the load using a private mechanism.

11.2.6. How an application server implements a ServerSession

Jakarta Messaging does not architect the implementation of a ServerSession. A typical implementation
is presented here to illustrate the concept:

1. An app server creates a Thread for a ServerSession registering the ServerSession’s runObject. The
implementation of this runObject is private to the app server.

5. The ServerSession’s start method calls its Thread’s start method. As with all Java threads, a call to
start initiates execution of the started thread and calls the thread’s runObject. The caller to
ServerSession.start (the ConnectionConsumer) and the ServerSession runObject are now running
in different threads.

6. The runObject will do some housekeeping and then call its Session’s run() method. On return, the
runObject puts its ServerSession back into its ServerSessionPool and returns. This terminates
execution of the ServerSession’s thread and the cycle starts again.

11.2. Concurrent processing of a subscription’s messages
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11.2.7. The result

Jakarta Messaging has defined a flexible mechanism that partitions the job of concurrent message
consumption into roles that are well suited for each participant.

The application programmer provides a simple to write, single threaded implementation of
MessageListener.

The Jakarta Messaging provider retains control of its messages until they are delivered to the
MessageListener. This ensures it is under direct control of message acknowledgment.

The application server is in control of setting up the ConnectionConsumer and managing all the
threads used for executing its MessageListeners.

The following diagram illustrates the relationship between the three roles and the objects they
implement.

The following diagram illustrates the process a ConnectionConsumer uses to deliver a message to a
MessageListener.

11.2. Concurrent processing of a subscription’s messages
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11.3. Support for distributed transactions
Some application servers provide support for grouping resource use into a distributed transaction. To
include Jakarta Messaging transactions in a distributed transaction, an application server requires a
Jakarta Transactions API capable Jakarta Messaging provider.

11.3.1. XA connection factory

A Jakarta Messaging provider exposes its Jakarta Transactions support using XA equivalents of the
normal connection factory objects.

• For applications which use the classic or simplified APIs, a Jakarta Messaging provider exposes its
Jakarta Transactions support using a Jakarta Messaging XAConnectionFactory which an application
server uses to create XAConnection or JMSXAContext objects.

• For applications which use the domain-specific API for point-to-point messaging, a Jakarta
Messaging provider exposes its Jakarta Transactions support using a Jakarta Messaging
XAQueueConnectionFactory which the application server uses to create XAQueueConnection
objects.

• For applications which use the domain-specific API for pub/sub messaging, a Jakarta Messaging
provider exposes its Jakarta Transactions support using a Jakarta Messaging
XATopicConnectionFactory which the application server uses to create XATopicConnection objects.

These connection factory objects provide the same authentication options as normal connection
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factory objects. They are Jakarta Messaging administered objects just like normal connection factory
objects. It is expected that application servers will find them using JNDI.

11.3.2. XA connection

The XA connection objects extend the capability of normal connection objects by providing the ability
to create XA session objects.

• An XAConnection provides the ability to create XASession objects.

• An XAQueueConnection provides the ability to create XAQueueSession objects.

• An XATopicConnection provides the ability to create XATopicSession objects.

11.3.3. XA session

The XA session objects (XASession, XAQueueSession and XATopicSession) provide access to what looks
like a normal session object (a Session, QueueSession or TopicSession) and a
javax.transaction.xa.XAResource object which controls its transaction context.

An application server controls the transactional assignment of an XA session object by obtaining its
XAResource. It uses the XAResource to assign the session to a distributed transaction; prepare and
commit work on the transaction, and so on. A client of the application server is given the normal
session object. Behind the scenes, the application server controls the transaction management of the
underlying XA session object.

11.3.4. XAJMSContext

XAJMSContext provides access to what looks like a normal JMSContext object and a
javax.transaction.xa.XAResource object which controls its transaction context.

An application server controls the transactional assignment of an XAJMSContext by obtaining its
XAResource. It uses the XAResource to assign the session to a distributed transaction; prepare and
commit work on the transaction, and so on.

A client of the application server is given the XAJMSContext’s JMSContext. Behind the scenes, the
application server controls the transaction management of the underlying XAJMSContext.

11.3.5. XAResource

The functionality of XAResource closely resembles that defined by the standard X/Open XA Resource
interface.

An XAResource provides some fairly sophisticated facilities for interleaving work on multiple
transactions, recovering a list of transactions in progress, and so on. A Jakarta Transactions aware
Jakarta Messaging provider must fully implement this functionality. This could be done by using the
services of a database that supports XA, or a Jakarta Messaging provider may choose to implement this
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functionality from scratch.

It is important to note that a distributed transaction context does not flow with a message; that is, the
receipt of the message cannot be part of the same transaction that produced the message. This is the
fundamental difference between messaging and synchronized processing. Message producers and
consumers use an alternative approach to reliability that is built upon a Jakarta Messaging provider’s
ability to supply a once-and-only-once message delivery guarantee.

To reiterate, the act of producing and/or consuming messages in a Session can be transactional. The act
of producing and consuming a specific message across different sessions cannot.

11.4. Jakarta Messaging application server interfaces
The domain-specific APIs for point-to-point and pub/sub messaging provide their own versions of
Jakarta Transactions aware Jakarta Messaging facilities.

However the classic API provides common interfaces, which should be used in preference to the
domain-specific interfaces. These are listed as Jakarta Messaging common interfaces in .

Table 11‑1 Relationship of optional interfaces in domains

Classic API Domain-specific API for point-
to-point messaging

Domain-specific API for
pub/sub messaging

ServerSessionPool Not domain-specific Not domain-specific

ServerSession Not domain-specific Not domain-specific

ConnectionConsumer Not domain-specific Not domain-specific

XAConnectionFactory XAQueueConnectionFactory XATopicConnectionFactory

XAConnection XAQueueConnection XATopicConnection

XASession XAQueueSession XATopicSession

XAJMSContext Not domain-specific Not domain-specific

11.4. Jakarta Messaging application server interfaces
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Chapter 12. Use of Jakarta Messaging API in
Jakarta EE applications

12.1. Overview
The Jakarta EE Platform Specification requires support for the Jakarta Messaging API as part of the full
Jakarta EE platform.

The Jakarta EE platform provides a number of additional features which are not available in the Java
Platform Standard Edition (Java SE). These include the following:

• Support for distributed transactions which are demarcated either programmatically, using
methods on jakarta.transaction.UserTransaction, or automatically by the container. These are
referred to in this specification as Jakarta transactions to distinguish them from Jakarta Messaging
local transactions.

• Support for Jakarta Messaging message-driven beans.

These features are defined in detail in other specifications including the Jakarta EE Platform
specification and the Jakarta Enterprise Beans specification. However the use of the Jakarta EE
platform imposes restrictions on the way that the Jakarta Messaging API may be used by applications,
and those restrictions are described here.

The Jakarta Messaging specification does not define how a Jakarta EE container integrates with its
Jakarta Messaging provider. Different Jakarta EE containers may integrate with their Jakarta
Messaging provider in different ways.

12.2. Restrictions on the use of Jakarta Messaging API in
the Jakarta EE web container or Enterprise Beans
container
Jakarta Messaging applications which run in the Jakarta EE web container or Enterprise Beans
container are subject to a number of restrictions in the way the Jakarta Messaging API may be used.
These restrictions are necessary for the following reasons:

• In a Jakarta EE web container or Enterprise Beans container, a Jakarta Messaging provider
operates as a transactional resource manager which must participate in Jakarta transactions as
defined in the Jakarta EE platform specification. This overrides the behaviour of Jakarta Messaging
sessions as defined elsewhere in the Jakarta Messaging specification. For more details see section
12.3 “Behaviour of Jakarta Messaging sessions in the Jakarta EE web container or Enterprise Beans
container”.

• The Jakarta EE web containers or Enterprise Beans containers need to be able to manage the
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threads used to run applications.

• The Jakarta EE web containers and Enterprise Beans containers perform connection management
which may include the pooling of Jakarta Messaging connections.

The restrictions described in this section do not apply to the Jakarta EE application client container.

Applications running in the Jakarta EE web containers and Enterprise Beans containers must not
attempt to create more than one active (not closed) Session object per connection.

• If an application attempts to use the Connection object’s createSession method when an active
Session object exists for that connection then a JMSException should be thrown.

• If an application attempts to use the JMSContext object’s createContext method then a
JMSRuntimeException must be thrown, since the first JMSContext already contains a connection
and session and this method would create a second session on the same connection.

The following methods are intended for use by the application server and their use by applications
running in the Jakarta EE web container or Enterprise Beans container may interfere with the
container’s ability to properly manage the threads used in the runtime environment. They must
therefore not be called by applications running in the Jakarta EE web container or Enterprise Beans
container:

• jakarta.jms.Session method setMessageListener

• jakarta.jms.Session method getMessageListener

• jakarta.jms.Session method run

• jakarta.jms.Connection method createConnectionConsumer

• jakarta.jms.Connection method createSharedConnectionConsumer

• jakarta.jms.Connection method createDurableConnectionConsumer

• jakarta.jms.Connection method createSharedDurableConnectionConsumer

The following methods may interfere with the container’s ability to properly manage the threads
used in the runtime environment and must not be used by applications running in the Jakarta EE
web container or Enterprise Beans container:

• jakarta.jms.MessageConsumer method setMessageListener

• jakarta.jms.MessageConsumer method getMessageListener

• jakarta.jms.JMSContext method setMessageListener

• jakarta.jms.JMSContext method getMessageListener

This restriction means that applications running in the Jakarta EE web container or Enterprise
Beans container which need to receive messages asynchronously may only do so using message-
driven beans.

12.2. Restrictions on the use of Jakarta Messaging API in the Jakarta EE web container or Enterprise Beans container
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The following methods may interfere with the container’s management of connections and must not
be used by applications running in the Jakarta EE web container or Enterprise Beans container:

• jakarta.jms.Connection method setClientID

• jakarta.jms.Connection method stop

• jakarta.jms.Connection method setExceptionListener

• jakarta.jms.JMSContext method setClientID

• jakarta.jms.JMSContext method stop

• jakarta.jms.JMSContext method setExceptionListener

Applications which need to use a specific client identifier must set it on the connection factory, as
described in section 6.1.2 “Client identifier”.

An asynchronous send is not permitted in a Jakarta EE web contaienr or Enterprise Beans container.
The following methods must therefore not be used in a Jakarta EE web web container or Enterprise
Beans container:

• jakarta.jms.MessageProducer method send(Message message, CompletionListener
completionListener)

• jakarta.jms.MessageProducer method send(Message message, int deliveryMode, int priority, long
timeToLive, CompletionListener completionListener)

• jakarta.jms.MessageProducer method send(Destination destination, Message message,
CompletionListener completionListener)

• jakarta.jms.MessageProducer method send(Destination destination, Message message, int
deliveryMode, int priority, long timeToLive, CompletionListener completionListener)

• jakarta.jms.JMSProducer method setAsync(CompletionListener completionListener)

All the methods listed in this section may throw a jakarta.jms.JMSException (if allowed by the
method) or a jakarta.jms.JMSRuntimeException (if not) when called by an application running in
the Jakarta EE web container or Enterprise Beans container. This is recommended but not
required.

12.3. Behaviour of Jakarta Messaging sessions in the
Jakarta EE web container or Enterprise Beans container
The behaviour of Jakarta Messaging Session and JMSContext objects in respect of
transactions and message acknowledgement is different for applications
which run in a Jakarta EE web container or Enterprise Beans container than it is for applications
which run in a normal Java SE environment or in the Jakarta EE application
client container.

12.3. Behaviour of Jakarta Messaging sessions in the Jakarta EE web container or Enterprise Beans container
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When an application creates a Session or JMSContext in a Jakarta EE web container
or Enterprise Beans container, and there is an active Jakarta transaction in progress,
then the session that is created will participate in the Jakarta
transaction and will be committed or rolled back when the Jakarta
transaction is committed or rolled back. Any session parameters that
are specified when creating the Session or JMSContext are ignored. The
use of local transactions or client acknowledgement is not permitted.

This applies irrespective of whether the Jakarta transaction is demarcated
automatically by the container or programmatically using methods on
jakarta.transaction.UserTransaction.

The term “session parameters” here refers to the arguments that may be
passed into a call to the createSession or createContext methods to
specify whether the session should use a local transaction and, if the
session is non-transacted, what the acknowledgement mode should be.

When an application uses one of the createSession methods to create
a Session, and there is no active Jakarta transaction in progress,
then:

• If the session parameters specify that the session should be non-transacted with an
acknowledgement mode of AUTO_ACKNOWLEDGE or DUPS_OK_ACKNOWLEDGE then the session
will be non-transacted and messages will be acknowledged according to the specified
acknowledgement mode.

• If the session parameters specify that the session should be non-transacted with an
acknowledgement mode of CLIENT_ACKNOWLEDGE then the Jakarta Messaging provider is
recommended to ignore the specified parameters and instead provide a non-transacted, auto-
acknowledged session. However the Jakarta Messaging provider may alternatively provide a non-
transacted session with client acknowledgement.

• If the session parameters specify that the session should be transacted,
then the Jakarta Messaging provider is recommended to ignore the specified parameters and
instead provide a non-transacted, auto-acknowledged session. However the Jakarta Messaging
provider may alternatively provide a local transacted session.

• Applications running in a Jakarta EE web web container or Enterprise Beans container are
recommended to specify no session parameters or to specify that the session be non-transacted
with an acknowledgement mode of AUTO_ACKNOWLEDGE or DUPS_OK_ACKNOWLEDGE.

• It is not recommended that applications specify client acknowledgement or a local transaction
since applications may not be portable. Furthermore if the Jakarta Messaging provider does
support the use of client acknowledgement and local transactions when there is no Jakarta
transaction, the application would need to be written differently dependent on whether there was
a Jakarta transaction or not.

When an application uses one of the createContext methods to create
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a JMSContext, and there is no active Jakarta transaction in progress,
then:

• If the specified session mode is AUTO_ACKNOWLEDGE or DUPS_OK_ACKNOWLEDGE then the
session will be non-transacted and messages will be acknowledged according to the specified
acknowledgement mode.

• If the specified session mode is CLIENT_ACKNOWLEDGE or SESSION_TRANSACTED then it will be
ignored and a session mode of AUTO_ACKNOWLEDGE used.

• Applications running in a Jakarta EE web container or Enterprise Beans container are
recommended to specify no session parameters or to specify that the session be non-transacted
with an acknowledgement mode of AUTO_ACKNOWLEDGE or DUPS_OK_ACKNOWLEDGE.

• The use of local transactions or client acknowledgement is not permitted in a Jakarta EE web
container or Enterprise Beans container even if there is no active
Jakarta transaction because this would require applications to be written
differently depending on whether there was a Jakarta transaction or not.

When programmatic transaction demarcation is being used, the session should be both created and
used within an active Jakarta transaction.

If a Session or JMSContext is created when there is an active Jakarta transaction, then after that
transaction is committed or rolled back the session remains available for use in any subsequent
Jakarta transaction until the Session or JMSContext is closed.

However, if a Session or JMSContext is created when there is an active Jakarta transaction but is
subsequently used to send or receive messages when there is no active Jakarta transaction then the
behaviour is undefined.

Similarly, if a Session or JMSContext is created when there is no active Jakarta transaction but
subsequently used to send or receive messages when there is an active Jakarta transaction then the
behaviour is undefined.

The Bean Provider should not make use of the Jakarta Messaging request/reply paradigm (sending of a
Jakarta Messaging message, followed by the synchronous receipt of a reply to that message) within a
single transaction. Because a Jakarta Messaging message is typically not delivered to its final
destination until the transaction commits, the receipt of the reply within the same transaction will not
take place.

12.4. Injection of JMSContext objects

12.4.1. Support for injection

Injection of JMSContext objects is supported in those Jakarta EE application classes which support
dependency injection using CDI and for which CDI support has been enabled by means of a
META_INF/beans.xml descriptor.
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Section EE.5.24 of the Jakarta EE specification lists the application classes that support dependency
injection using CDI.

Section 12.1 of the CDI specification specifies how CDI support may be enabled for a particular
application.

12.4.2. Container-managed and application-managed JMSContexts

A JMSContext object which has been injected is described as being container-managed, as it is created
and closed by the container, not the application.

A JMSContext object which has been created by calling the ConnectionFactory method createContext is
described as being application-managed. The application is responsible for calling the close method
when the object is not longer needed.

12.4.3. Injection syntax

Applications may declare a field of type jakarta.jms.JMSContext and annotate it with the
jakarta.inject.Inject annotation:

@Inject
private JMSContext context;

The container will inject a JMSContext. This object will have a scope as defined by section 12.4.4 “Scope
of injected JMSContext objects”.

The annotation jakarta.jms.JMSConnectionFactory may be used to specify the JNDI lookup name of the
ConnectionFactory used to create the JMSContext. For example:

@Inject
@JMSConnectionFactory("jms/connectionFactory")
private JMSContext context;

If the JMSConnectionFactory annotation is omitted then the platform default Jakarta Messaging
connection factory will be used.

The annotation jakarta.jms.JMSPasswordCredential may be used to specify a user name and password
which will be used when the JMSContext is created. For example:
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@Inject
@JMSConnectionFactory("jms/connectionFactory")
@JMSPasswordCredential(
    userName="admin",password="mypassword")
private JMSContext context;

The annotation jakarta.jms.JMSSessionMode may be used to specify the session mode of the
JMSContext. For example:

@Inject
@JMSConnectionFactory("jms/connectionFactory")
@JMSSessionMode(JMSContext.AUTO_ACKNOWLEDGE)
private JMSContext context;

The meaning and possible values of session mode are the same as for the ConnectionFactory method
createContext(int sessionMode):

• In the Jakarta EE application client container, session mode may be set to any of
JMSContext.SESSION_TRANSACTED, JMSContext.CLIENT_ACKNOWLEDGE,
JMSContext.AUTO_ACKNOWLEDGE or JMSContext.DUPS_OK_ACKNOWLEDGE. If no session mode is
specified or the JMSSessionMode annotation is omitted a session mode of
JMSContext.AUTO_ACKNOWLEDGE will be used.

• In a Jakarta EE web container or Enterprise Beans container, when there is an active Jakarta
transaction in progress, session mode is ignored and the JMSSessionMode annotation is
unnecessary.

• In a Jakarta EE web container or Enterprise Beans container, when there is no active Jakarta
transaction in progress, session mode may be set to either of JMSContext.AUTO_ACKNOWLEDGE or
JMSContext.DUPS_OK_ACKNOWLEDGE. If no session mode is specified or the JMSSessionMode
annotation is omitted a session mode of JMSContext.AUTO_ACKNOWLEDGE will be used.

For more information about the use of session mode when creating a messaging context, see section
12.3 “Behaviour of Jakarta Messaging sessions in the Jakarta EE web container or Enterprise Beans
container” and the API documentation for the ConnectionFactory method createContext(int
sessionMode).

12.4.4. Scope of injected JMSContext objects

The scope of an injected JMSContext defines whether different injected JMSContext objects will
actually refer to the same JMSContext object.

It also defines when the injected JMSContext will be closed by the container. When the object falls out
of scope, the container will automatically call close().
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The scope of an injected JMSContext object will depend on whether there is a Jakarta transaction in
progress at the point where a particular method on the JMSContext is called.

• If a method is called on an injected JMSContext when there is a Jakarta transaction (either bean-
managed or container-managed), the scope of the JMSContext will be @TransactionScoped. This
scope is defined in the Jakarta Transactions specification. This means that:

◦ The JMSContext object will be automatically created the first time a method on the JMSContext
is called within the transaction.

◦ The JMSContext object will be automatically closed when the transaction is committed or rolled
back.

◦ Within the same Jakarta transaction, JMSContext objects injected using identical annotations
will refer to the same JMSContext object.

• If a method is called on an injected JMSContext when there is no Jakarta transaction then the scope
of the JMSContext will be @RequestScoped. This scope is defined in the CDI specification. This
means that:

◦ The JMSContext object will be automatically created the first time a method on the JMSContext
is called within a request.

◦ The JMSContext object will be automatically closed when the request ends.

◦ Within the same request, JMSContext objects injected using identical annotations will refer to
the same JMSContext object.

• If a method is called on an injected JMSContext both in a Jakarta transaction and outside a Jakarta
transaction then separate JMSContext objects will be used in each case, with a separate JMSContext
object being used for each Jakarta transaction as described above.

12.4.5. Restrictions on use of injected JMSContext objects

Within the same scope, different injected JMSContext objects which are injected using identical
annotations will all refer to the same JMSContext object.

This means that they will all use the same connection. This will reduce the resource usage of the
application and improve performance.

It also means that messages would be sent using the same session. Messages sent using different
JMSContext objects in the same scope will be therefore received in order in which they were sent (see
section 6.2.9.2 “Order of message sends” for a few qualifications).

However, to avoid the possibility of code in one bean having an unexpected effect on a different bean,
the following methods which change the public state of a JMSContext will not be permitted if the
JMSContext is injected.

• setClientID

• setExceptionListener
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• stop

• acknowledge

• commit

• rollback

• recover

• setAutoStart

• start

• close

These methods must throw a IllegalStateRuntimeException if the JMSContext is injected. These
restrictions do not apply when the JMSContext is managed by the application; though note that several
of these methods are in any case prohibited in a Jakarta EE web container or Enterprise Beans
container.
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Chapter 13. Resource adapter
The Jakarta Connectors specification defines a standard architecture for connecting the Jakarta EE
platform to enterprise information systems (EISs).

A Jakarta Messaging provider (whether it forms part of a Jakarta EE application server or not) is
recommended to include a resource adapter which connects to that Jakarta Messaging provider and
which conforms to the Jakarta Connectors specification and as further specified in this chapter.

13.1. MDB activation properties
Message-driven beans are defined in the Jakarta Enterprise Beans specification. Jakarta Messaging
defines the following activation properties for message-driven beans.

Table 13‑1 MDB activation properties defined by Jakarta Messaging

Activation property Description

destinationLookup This property may be used to specify the lookup
name of an administratively-defined
jakarta.jms.Queue or jakarta.jms.Topic object
which defines the Jakarta Messaging queue or
topic from which the endpoint (message-driven
bean) is to receive messages.

connectionFactoryLookup This property may be used to specify the lookup
name of an administratively-defined
jakarta.jms.ConnectionFactory,
jakarta.jms.QueueConnectionFactory or
jakarta.jms.TopicConnectionFactory object that
will be used to connect to the Jakarta Messaging
provider from which the endpoint (message-
driven bean) is to receive messages.

acknowledgeMode If bean-managed transaction demarcation is used,
this property may be used to indicate whether
Jakarta Messaging AUTO_ACKNOWLEDGE
semantics or DUPS_OK_ACKNOWLEDGE
semantics should apply.

This property may be set to either Auto-
acknowledge or Dups-ok-acknowledge. If this
property is not specified, a default of Auto-
acknowledge will be used.
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Activation property Description

messageSelector This property may be used to specify a message
selector. If this property is not specified then a
message selector will not be used.

destinationType This property may be used to specify whether the
specified destination is a queue or topic. The valid
values are jakarta.jms.Queue or jakarta.jms.Topic.

subscriptionDurability This property only applies to endpoints (message-
driven beans) that receive messages published to
a topic. It may be used to specify whether the
subscription is durable or non-durable.

This property may be set to either Durable or
NonDurable. If this property is not specified, a
default of NonDurable will be used.

clientId This property may be used to specify the client
identifier that will be used when connecting to
the Jakarta Messaging provider from which the
endpoint (message-driven bean) is to receive
messages.

Setting this property is always optional.

subscriptionName This property only applies to endpoints (message-
driven beans) that receive messages published to
a topic. It may be used to specify the name of the
durable or non-durable subscription.

It is not defined whether a shared or unshared
subscription is used.
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Chapter 14. Examples of the classic API
This chapter gives some code examples that show how a Jakarta Messaging client could use the Jakarta
Messaging classic API. It also demonstrates how to use several message types.

It is recommended that either the classic API or the simplified API be used in preference to the domain-
specific APIs for point-to-point messaging. See also chapter 15 “Examples of the simplified API”.

In the example program, a client application sends and receives stock quote information. The
messages the client application receives are from a stock quote service that sends out stock quote
messages. The stock quote service is not described in the example.

To simplify the example, no exception-handling code is included.

This chapter describes the steps for creating the correct environment for sending and receiving a
message.

After describing these basic functions, this chapter describes how to perform some other common
functions, such as using message selectors.

14.1. Preparing to send and receive messages
Here are the basic steps to establish a connection and prepare to send and receive messages.

• Get a ConnectionFactory and Destination

• Create a Connection and Session

• Create a MessageConsumer

• Create a MessageProducer

14.1.1. Getting a ConnectionFactory

Both the message producer and message consumer (the sender and receiver) need to get a
ConnectionFactory and use it to set up both a Connection and a Session.

An administrator typically has created and configured a ConnectionFactory for the Jakarta Messaging
client’s use. The client program typically uses the JNDI API to look up the ConnectionFactory.

import javax.naming.*;
import jakarta.jms.*;

Context namingContext = new InitialContext();
ConnectionFactory ConnectionFactory =
    (ConnectionFactory) namingContext.lookup("myCF");
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14.1.2. Getting a Destination

An administrator has created and configured a Queue named "StockSource" which is where stock
quote messages are sent and received. Again, the destination can be looked up using the JNDI API.

Queue stockQueue = (Queue)namingContext.lookup("StockSource");

14.1.3. Creating a Connection

Having obtained the ConnectionFactory, the client program uses it to create a Connection.

Connection connection = connectionFactory.createConnection();

A Connection must be closed after use. This may be done explicitly using the close method:

connection.close();

Alternatively a connection may be closed automatically using the try-with-resources statement:

try (Connection connection=connectionFactory.createConnection()) {
    // use connection in this try block
    // it will be closed when try block completes
} catch (JMSException e) {
    // exception handling
}

14.1.4. Creating a Session

Having obtained the Connection, the client program uses it to create a Session. The Session is used to
create a MessageProducer (to send messages) or a MessageConsumer (to receive messages).

There are three createSession methods on Connection, with different numbers of arguments. Java SE
applicatrions such as this example should use the method with one integer argument, sessionMode.
This single argument indicates

• whether the session will use a local transaction or whether it is non-transacted and,

• if the session is non-transacted, what mode should be used for acknowledging the receipt of
messages.
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// Session is not transacted and
// uses AUTO_ACKNOWLEDGE for message acknowledgement

Session session=connection.createSession(Session.AUTO_ACKNOWLEDGE);

14.1.5. Creating a MessageProducer

Having obtained the Session, the client program uses the Session to create a MessageProducer. The
MessageProducer object is used to send messages to the destination. The MessageProducer is created
by using the Session.createProducer method, supplying as a parameter the destination to which the
messages are sent.

// stockQueue was previously looked up using JNDI

MessageProducer producer = session.createProducer(stockQueue);

14.1.6. Creating a MessageConsumer

Messages can be consumed either synchronously or asynchronously. This example shows how to
create a message consumer that consumes messages synchronously. See section 14.3.1 “Receiving
messages asynchronously” to learn more about consuming messages asynchronously.

A MessageConsumer is used to receive messages from the destination, which in this example is the
Queue stockQueue. A MessageConsumer is created using the Session.createConsumer method,
supplying one parameter, the destination from which messages are received.

// stockQueue was previously looked up using JNDI

MessageConsumer consumer = session.createConsumer(stockQueue);

14.1.7. Starting message delivery

Up until this point, delivery of messages has been inhibited so that the preceding setup could be done
without being interrupted with asynchronously delivered messages. Now that the setup is complete,
the Connection is told to begin the delivery of messages to its MessageConsumer.

connection.start();

14.1.8. Using a TextMessage

There are several Jakarta Messaging Message formats. For this example, the stock quote information is
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sent as a text string that is read and displayed by the client.

The following demonstrates how to create such a message:

String stockData; // Stock information as a string

// Set the message's text to be the stockData string
TextMessage message = session.createTextMessage();
message.setText(stockData);

14.2. Sending and receiving messages
Now that the setup of the Session is complete, you can send and receive messages. This section
describes how to:

• Create a message

• Send a message

• Receive a message synchronously

14.2.1. Sending a message

To send a message, use the MessageProducer.send method, supplying a Message object for the
method’s parameter.

// Send the message
producer.send(message);

14.2.2. Receiving a message synchronously

To receive the next message in the queue, you can use the MessageConsumer.receive method. This call
blocks indefinitely until a message arrives on the queue. The same method can be used to receive from
a topic.

Message stockMessage = consumer.receive();

To limit the amount of time that the client blocks, use a timeout parameter with the receive method. If
no messages arrive by the end of the timeout, then the receive method returns. The timeout parameter
is expressed in milliseconds.
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// Wait up to 4 seconds for a message
Message stockMessage = receiver.receive(4000);

14.2.3. Unpacking a TextMessage

The stock quote information is sent using a TextMessage. There are two ways to extract the
information from the message.

The receive method returns a Message object. You can cast this to a TextMessage and call the getText
method. This returns the message content as a string:

// extract stock information from message
String newStockData = ((TextMessage)stockMessage)getText();

Alternatively you can call the Message object’s getBody method. In this case you do not need to cast the
Message to a TextMessage. Instead you need to pass in the type expected:

// extract stock information from message
String newStockData= stockMessage.getBody(String.class);

14.3. Other messaging features
This section goes beyond basic messaging functions, and describes how to perform some other
common messaging functions:

• Create an asynchronous MessageListener

• Use a message selector to filter message delivery

• Create a durable subscription to a topic

• Re-connect to a topic using a durable subscription

14.3.1. Receiving messages asynchronously

In order to receive message asynchronously as they are delivered to the message consumer, the client
program needs to create a message listener that implements the MessageListener interface. An
implementation of the MessageListener interface, called StockListener.java, might look like this:
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import jakarta.jms.*;

public class StockListener implements MessageListener {
    public void onMessage(Message message) {
    // Unpack and handle the messages received
    ...
    }
}

The client program registers the MessageListener object with the MessageConsumer object in the
following way:

StockListener myListener = new StockListener();

// consumer is a MessageConsumer object
consumer.setMessageListener(myListener);

The Connection must be started for the message delivery to begin. The MessageListener is
asynchronously notified whenever a message has been published to the queue. This is done via the
onMessage method in the MessageListener interface. It is up to the client to process the message there.

public void onMessage(Message message) {

// Unpack and handle the messages received
    String newStockData =
        ((TextMessage)message).getText();
    if(...) {
        // Logic related to the data
    }
}

14.3.2. Using message selection

A client program may be interested in receiving only certain stock quotes. A message selector can be
used to achieve this goal. Message selectors work against properties that are assigned to the message.

In this example, the client program is only interested in technology related stocks. The sender of the
messages assigns a value to a message property called StockSector. The values the sender assigns
include “Technology”, “Financial”, “Manufacturing”, “Emerging”, and “Global”. The message sender
assigns these property values by using the Message.setStringProperty method.
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String stockData; // Stock information as a String

// Set the message's text to be the stockData string
TextMessage message = session.createTextMessage();
message.setText(stockData);

// Set the message property "StockSector"
message.setStringProperty("StockSector", "Technology");

When the client program that receives the stock quote messages creates a MessageConsumer, it can
supply a message selector string which specifies which messages it will receive.

String selector = new String("(StockSector = 'Technology')");
MessageConsumer consumer =
    session.createConsumer(stockQueue,selector);

The client program receives only messages related to the technology sector.

14.3.3. Using durable subscriptions

Durable subscriptions are used to receive messages from a topic. When a Jakarta Messaging client
creates a durable subscription, the client can later disconnect from the topic. When the client program
re-connects, it can receive the messages that arrived while it was disconnected. In this example, the
topic provides information about news updates.

14.3.3.1. Creating a durable subscription

The following example sets up a durable subscription that gets messages from a topic.

First, the client program must perform the usual setup steps of looking up ConnectionFactory and a
Destination, and creating a Connection and Session, as described in section 14.1 “Preparing to send and
receive messages”.
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import javax.naming.*;
import jakarta.jms.*;

// Look up connection factory
Context namingContext = new InitialContext();
ConnectionFactory connectionFactory =
    (ConnectionFactory) namingContext.lookup("ConnectionFactory")

// Look up destination
Topic newsFeedTopic = namingContext.lookup("BreakingNews");

// Create connection and session
Connection connection = ConnectionFactory.createConnection();
Session session=connection.createSession(Session.AUTO_ACKNOWLEDGE);

Having performed the normal setup, the client program can now create a durable subscription on the
destination. To do this, the client program uses the Session method createDurableConsumer.

MessageConsumer consumer =
    session.createDurableConsumer(newsFeedTopic,"mySubscription");

The name “mySubscription” is used as an identifier of the durable subscription.

At this point, the client program can start the connection and receive messages.

14.3.3.2. Creating a consumer on an existing durable subscription

Once a durable subscription has been created it will continue to accumulate messages until the
subscription is deleted using the Session method unsubscribe, even if the original MessageConsumer is
closed.

A client application may create a consumer on an existing durable subscription by calling the Session
method createDurableConsumer, supplying the same parameters that were specified when the durable
subscription was first created.

// Create a consumer on an existing durable subscription
MessageConsumer consumer =
    session.createDurableConsumer(newsFeedTopic, "mySubscription");

Any messages which were added to the subscription whilst it had no consumer will be delivered.

A durable subscription created using createDurableConsumer may only have one consumer at a time.

A durable subscription created using createSharedDurableConsumer may have may have more than one
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consumer at a time. Each message from the subscription will be delivered to only one of the consumers
on that subscription.

When creating a consumer on an existing durable subscription there are some important restrictions
to be aware of:

• The Destination and subscription name must be the same as when the durable subscription was
first created.

• If the connection’s client identifier was set when the durable subscription was first created then
the same client identifier must be set when subsequently creating a consumer on it.

• If a message selector was specified when the durable subscription was first created then the same
message selector must be specified when subsequently creating a consumer on it.

14.4. Jakarta Messaging message types
There are five Jakarta Messaging message types. This section provides an example of how to create and
unpack each of these types. In each example, the data sent in the message is stock-quote-related data.
In all cases, the code that creates the actual content of the messages is omitted.

14.4.1. Creating a TextMessage

In this example, the stock quote information is sent as a TextMessage. A TextMessage carries the
message as a text string that can be read by the client.

The following code demonstrates how to create such a message:

String stockData; // Stock information as a string

TextMessage message = session.createTextMessage();

// Set the stockData string to the message body
message.setText(stockData);

14.4.2. Unpacking a TextMessage

There are two ways to extract the text from a TextMessage. You can call the getText method on
TextMessage:

String stockData = stockMessage.getText();

Alternatively you can call the getBody method on Message, which is the common supertype of all
message types. In this case you need to pass in the body type expected:
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String stockData = stockMessage.getBody(String.class);

The use of getBody avoids the need to cast a newly-received Message object to a TextMessage.

14.4.3. Creating a BytesMessage

The stock quote information could be in a binary format that the server knows how to construct and
that the client program knows how to interpret and display as a stock quote. This is sent as a
BytesMessage.

Such a message can be constructed in the following way:

// Stock information as a byte array
byte[] stockData;
BytesMessage message = session.createBytesMessage();
message.writeBytes(stockData);

14.4.4. Unpacking a BytesMessage

There are several ways to extract the byte array from a BytesMessage. The simplest is to call the
readBytes method on BytesMessage. This copies the bytes to the specified byte array.

int bodyLength = message.getBodyLength();
byte[] stockData = new byte[bodyLength];
int bytesCopied = message.readBytes(stockData);

The readBytes method can also be used to read bytes in increments, by supplying a byte array whose
length is less than the number of bytes available. The readBytes method will fill the array and set the
return value to the number of bytes copied. A subsequent call reads the next increment and so on.

Alternatively you can call the getBody method on Message, which is the common supertype of all
message types. In this case you need to pass in the body type expected. This method creates a byte
array of the required size and copies all the bytes to it:

byte[] stockData = message.getBody(byte[].class);

The use of getBody avoids the need to cast a newly-received Message object to a BytesMessage.

14.4.5. Creating a MapMessage

Each stock message sent by the server could be a map of various stock quote name/value pairs, using a
MapMessage. For example, it could contain entries for:

14.4. Jakarta Messaging message types

Final Jakarta Messaging    119



• Stock quote name - represented as a String

• Current value - represented as a double

• Time of quote - represented as a long

• Last change - represented as a double

• Stock information - represented as a String

To construct the MapMessage, the client program uses the various set methods (setString, setLong, and
so forth) that are associated with MapMessage, and sets each named value in the MapMessage.

String stockName; // Name of the stock
double stockValue; // Current value of the stock
long stockTime; // Time stock quote was updated */
double stockDiff; // +/- change in the stock quote*/
String stockInfo; // Information on this stock */
MapMessage message = session.createMapMessage();

Note that the following can be set in any order.

// First parameter is the name of the map element,
// Second parameter is the value
message.setString("Name", "ORCL");
message.setDouble("Value", stockValue);
message.setLong("Time", stockTime);
message.setDouble("Diff", stockDiff);
message.setString(
    "Info", "Recent server announcement causes market interest");

14.4.6. Unpacking a MapMessage

There are two ways to extract body data from a MapMessage.

You can use the various get methods associated with MapMessage to get the values in the named
MapMessage elements. In the following example, the client program expects certain MapMessage
elements.

String stockName; // Name of the stock
double stockValue; // Current value of the stock
long stockTime; // Time stock quote was updated
double stockDiff; // +/- change in the stock
String stockInfo; // Information on this stock

The data is retrieved from the message by using a get method and providing the name of the value

14.4. Jakarta Messaging message types

120    Jakarta Messaging Final



desired. The elements from the MapMessage can be obtained in any order.

stockName = message.getString("Name");
stockDiff = message.getDouble("Diff");
stockValue = message.getDouble("Value");
stockTime = message.getLong("Time");

Alternatively you can call the getBody method on Message, which is the common supertype of all
message types. In this case you need to pass in the body type expected. This method returns a
java.util.Map containing all the keys and values in the MapMessage.

Map stockData = message.getBody(Map.class);
stockName = (String)stockData.getString("Name");
stockDiff = (Double)stockData.getDouble("Diff");
stockValue = (Double)stockData.getDouble("Value");
stockTime = (Long)stockData.getLong("Time");

The use of getBody avoids the need to cast a newly-received Message object to a BytesMessage.

If an application needs to get a list of the elements in a MapMessage, it can use the method
MapMessage.getMapNames.

14.4.7. Creating a StreamMessage

In a similar fashion to the MapMessage, an application could send a message consisting of various
fields written in sequence to the message, each in their own primitive type. To do this, it would use a
StreamMessage. Here’s the primitive types assigned to each item in the stock quote message.

• Stock quote name - String

• Current value - double

• Time of quote - long

• Last change - double

• Stock information - String

The client program might be interested in only some of the message fields, but in the case of a
StreamMessage, the client has to read and potentially discard each field in turn.

In the following example, the values for each of the following have already been set:
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String stockName; // Name of the stock
double stockValue; // Current value of the stock
long stockTime; // Time stock quote was updated
double stockDiff; // +/- change in the stock quote
String stockInfo; // Information on this stock

// Create message
StreamMessage message = session.createStreamMessage();

The following elements have to be written to the StreamMessage in the order they will be read. Notice
that they are not separately named properties, as in MapMessage.

// Set data for message
message.writeString(stockName);
message.writeDouble(stockValue);
message.writeLong(stockTime);
message.writeDouble(stockDiff);
message.writeString(stockInfo);

14.4.8. Unpacking a StreamMessage

The elements of a StreamMessage have to be read in the order they were written.

String stockName; // Name of the stock quote
double stockValue; // Current value of the stock
long stockTime; // Time stock quote was updated
double stockDiff; // +/- change in the stock quote
String stockInfo; // Information on this stock

stockName = message.readString();
stockValue = message.readDouble();
stockTime = message.readLong();
stockDiff = message.readDouble();
stockInfo = message.readString();

The getBody method cannot be used with a StreamMessage.

14.4.9. Creating an ObjectMessage

The stock information could be sent in the form of a special StockObject Java object. This object can
then be sent as the body of a ObjectMessage. The ObjectMessage can be used to send Java objects.

These values are set using methods that are unique to the StockObject implementation. For example,
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StockObject may have methods that set the various data values. An application using StockObject might
look like this:

String stockName; // Name of the stock quote
double stockValue; // Current value of the stock
long stockTime; // Time stock quote was updated
double stockDiff; // +/- change in the stock quote
String stockInfo; // Information on this stock

// Create a StockObject
StockObject stockObject = new StockObject();

// Establish the values for the StockObject
stockObject.setName(stockName);
stockObject.setValue(stockValue);
stockObject.setTime(stockTime);
stockObject.setDiff(stockDiff);
stockObject.setInfo(stockInfo);

To create an ObjectMessage with the StockObject as the message body, you would do the following:

// Create an ObjectMessage
ObjectMessage message = session.createObjectMessage();

// Set the body of the message to the StockObject
message.setObject(stockObject);

14.4.10. Unpacking an ObjectMessage

There are two ways to extract the object from an ObjectMessage. You can call the getObject method on
ObjectMessage:
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// Retrieve the StockObject from the message
StockObject stockObject = (StockObject)message.getObject();

// Extract data from the StockObject using StockObject methods
String stockName; // Name of the stock quote
double stockValue; // Current value of the stock
long stockTime; // Time stock quote was updated
double stockDiff; // +/- change in the stock quote
String stockInfo; // Information on this stock

stockName = stockObject.getName();
stockValue = stockObject.getValue();
stockTime = stockObject.getTime();
stockDiff = stockObject.getDiff();
stockInfo = stockObject.getInfo();

Alternatively you can call the getBody method on Message, which is the common supertype of all
message types. In this case you need to specify the object type expected:

StockObject stockObject = message.getBody(StockObject.class);

// Extract data from the StockObject using StockObject methods
String stockName; // Name of the stock quote
double stockValue; // Current value of the stock
long stockTime; // Time stock quote was updated
double stockDiff; // +/- change in the stock quote
String stockInfo; // Information on this stock

stockName = stockObject.getName();
stockValue = stockObject.getValue();
stockTime = stockObject.getTime();
stockDiff = stockObject.getDiff();
stockInfo = stockObject.getInfo();

The use of getBody avoids the need to cast a newly-received Message object to an ObjectMessage. It
also avoids the need to cast the object returned by getObject to the appropriate type.
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Chapter 15. Examples of the simplified API
The examples in this section compare the use of the classic and simplified Jakarta Messaging APIs for
some common Jakarta Messaging operations.

15.1. Sending a message (Jakarta EE)
This example compares the use of the classic and simplified Jakarta Messaging APIs for sending a
TextMessage in a Jakarta EE web container or Enterprise Beans container.

15.1.1. Example using the classic API

Here’s how you might do this using the classic API:

@Resource(lookup = "jms/connectionFactory")
ConnectionFactory connectionFactory;

@Resource(lookup="jms/dataQueue")
Queue dataQueue;

public void sendMessageOld (String body) throws JMSException {
    try (Connection connection =
        connectionFactory.createConnection()){
        Session session = connection.createSession();
        MessageProducer producer = session.createProducer(dataQueue);
        TextMessage textMessage = session.createTextMessage(body);
        messageProducer.send(textMessage);
    }
}

15.1.2. Example using the simplified API

Here’s how you might do this using the simplified API:
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@Resource(lookup = "jms/connectionFactory")
ConnectionFactory connectionFactory;

@Resource(lookup="jms/dataQueue")
Queue dataQueue;

public void sendMessageNew (String body) {
    try (JMSContext context = connectionFactory.createContext();){
        context.createProducer().send(dataQueue,body);
    }
}

Note that sendMessageNew does not need to throw JMSException.

15.1.3. Example using the simplified API and injection

Here’s how you might do this using the simplified API with the JMSContext created by injection:

@Inject
@JMSConnectionFactory("jms/connectionFactory")
private JMSContext context;

@Resource(mappedName = "jms/dataQueue")
private Queue dataQueue;

public void sendMessageNew(String body) {
    context.send(dataQueue, body);
}

15.2. Sending a message (Java SE)
This example compares the use of the classic and simplified Jakarta Messaging APIs for sending a
TextMessage in a Java SE environment.

15.2.1. Example using the classic API

Here’s how you might do this using the classic API:
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public void sendMessageOld(String body)
    throws JMSException, NamingException{

    InitialContext namingContext = getInitialContext();
    ConnectionFactory connectionFactory = (ConnectionFactory)
    namingContext.lookup("jms/connectionFactory");
    Queue dataQueue = (Queue) namingContext.lookup("jms/dataQueue")
    try (Connection connection =
            connectionFactory.createConnection()) {
        Session session = connection.createSession();
        MessageProducer messageProducer =
        session.createProducer(dataQueue);
        TextMessage textMessage = session.createTextMessage(body);
        messageProducer.send(textMessage);
    }
}

In the above example, getInitialContext() is an application method which returns a suitable JNDI
InitialContext.

15.2.2. Example using the simplified API

Here’s how you might do this using the simplified API:

public void sendMessageNew(String body) throws NamingException {

    InitialContext namingContext = getInitialContext();
    ConnectionFactory connectionFactory = (ConnectionFactory)
        namingContext.lookup("jms/connectionFactory");
    Queue dataQueue = (Queue)namingContext.lookup("jms/dataQueue");
    try (JMSContext context=connectionFactory.createContext();){
        context.createProducer().send(dataQueue,body);
    }
}

In the above example, getInitialContext() is an application method which returns a suitable JNDI
InitialContext.

Note that sendMessageNew does not need to throw JMSException.

15.3. Sending a message with properties (Java SE)
This example is similar to the previous example in that it compares the use of the classic and simplified
Jakarta Messaging APIs for sending a TextMessage in a Java SE environment.

15.3. Sending a message with properties (Java SE)
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However this example also configures various attributes of the message that is sent:

• The message property “foo” is set to a value of “bar”.

• The message is sent using a delivery mode of NON_PERSISTENT.

• The Jakarta Messaging provider is informed that message timestamps are not required.

15.3.1. Example using the classic API

Here’s how you might do this using the classic API:

public void sendMessageOld(String body)
throws JMSException, NamingException{

    InitialContext namingContext = getInitialContext();
    ConnectionFactory connectionFactory = (ConnectionFactory)
        namingContext.lookup("jms/connectionFactory");
    Queue dataQueue = (Queue) namingContext.lookup("jms/dataQueue");

    try (Connection connection =
            connectionFactory.createConnection()) {
        Session session = connection.createSession();
        MessageProducer producer = session.createProducer(dataQueue);
        TextMessage textMessage = session.createTextMessage(body);
        textMessage.setStringProperty("foo", "bar");
        messageProducer.setDeliveryMode(NON_PERSISTENT);
        messageProducer.setDisableMessageTimestamp(true);
        messageProducer.send(textMessage);
    }
}

In the above example, getInitialContext() is an application method which returns a suitable JNDI
InitialContext.

15.3.2. Example using the simplified API

Here’s how you might do this using the simplified API:
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public void sendMessageNew(String body) throws NamingException{

    InitialContext namingContext = getInitialContext();
    ConnectionFactory connectionFactory = (ConnectionFactory)
    namingContext.lookup("jms/connectionFactory");
    Queue dataQueue = (Queue)namingContext.lookup("jms/dataQueue");

    try (JMSContext context = connectionFactory.createContext()){
        context.createProducer().
            setProperty("foo", "bar").
            setTimeToLive(10000).
            setDeliveryMode(NON_PERSISTENT).
            setDisableMessageTimestamp(true).
            send(dataQueue, body);
    }
}

In the above example, getInitialContext() is an application method which returns a suitable JNDI
InitialContext.

Note that sendMessageNew does not need to throw JMSException.

15.4. Receiving a message synchronously (Jakarta EE)
This example compares the use of the classic and simplified Jakarta Messaging APIs for synchronously
receiving a TextMessage in a Jakarta EE web container or Enterprise Beans container.

15.4.1. Example using the classic API

Here’s how you might do this using the classic API:
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@Resource(lookup = "jms/connectionFactory")
ConnectionFactory connectionFactory;

@Resource(lookup="jms/dataQueue")
Queue dataQueue;

public String receiveMessageOld() throws JMSException {

    try (Connection connection =
            connectionFactory.createConnection()) {
        connection.start();
        Session session = connection.createSession();
        MessageConsumer consumer = session.createConsumer(dataQueue);
        TextMessage TextMessage =
            (TextMessage)messageConsumer.receive();
        String body = textMessage.getText();
        return body;
    }
}

15.4.2. Example using the simplified API

Here’s how you might do this using the simplified API.

@Resource(lookup = "jms/connectionFactory")
ConnectionFactory connectionFactory;

@Resource(lookup="jms/dataQueue")
Queue dataQueue;

public String receiveMessageNew() {

    try (JMSContext context = connectionFactory.createContext();){
    JMSConsumer consumer = context.createConsumer(demoQueue);
    return consumer.receiveBody(String.class);
    }
}

Note that receiveMessageNew does not need to throw JMSException.

15.4.3. Example using the simplified API and injection

Here’s how you might do this using the simplified API with the JMSContext created by injection:
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@Inject
@JMSConnectionFactory("jms/connectionFactory")
private JMSContext context;

@Resource(lookup="jms/dataQueue")
Queue dataQueue;

public String receiveMessageNew() {

    JMSConsumer consumer = context.createConsumer(dataQueue);
    return consumer.receiveBody(String.class);
}

15.5. Receiving a message synchronously (Java SE)
This example compares the use of the classic and simplified Jakarta Messaging APIs for synchronously
receiving a TextMessage in a Java SE environment.

15.5.1. Example using the classic API

Here’s how you might do this using the classic API:

public String receiveMessageOld()
        throws JMSException, NamingException {

    InitialContext namingContext = getInitialContext();
    ConnectionFactory connectionFactory = (ConnectionFactory)
        namingContext.lookup("jms/connectionFactory");
    Queue inboundQueue = (Queue)
        namingContext.lookup("jms/dataQueue");

    try (Connection connection =
            connectionFactory.createConnection();){
        Session session = connection.createSession(AUTO_ACKNOWLEDGE);
        MessageConsumer consumer = session.createConsumer(dataQueue);
        connection.start();
        TextMessage TextMessage = (TextMessage) consumer.receive();
        return textMessage.getText();
    }
}

In the above example, getInitialContext() is an application method which returns a suitable JNDI
InitialContext.
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15.5.2. Example using the simplified API

Here’s how you might do this using the simplified API.

public String receiveMessageNew() throws NamingException {

    InitialContext namingContext = getInitialContext();
    ConnectionFactory connectionFactory = (ConnectionFactory)
        namingContext.lookup("jms/connectionFactory");
    Queue dataQueue = (Queue) namingContext.lookup("jms/dataQueue");

    try (JMSContext context =
            connectionFactory.createContext(AUTO_ACKNOWLEDGE);) {
        JMSConsumer consumer = context.createConsumer(dataQueue);
        return consumer.receiveBody(String.class);
    }
}

In the above example, getInitialContext() is an application method which returns a suitable JNDI
InitialContext.

Note that receiveMessageNew does not need to throw JMSException.

15.6. Receiving a message synchronously from a durable
subscription (Jakarta EE)
This example compares the use of the classic and simplified Jakarta Messaging APIs for synchronously
receiving a TextMessage from a durable topic subscription in a Jakarta EE web container or Enterprise
Beans container.

15.6.1. Example using the classic API

Here’s how you might do this using the classic API.

15.6. Receiving a message synchronously from a durable subscription (Jakarta EE)
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@Resource(lookup = "jms/connectionFactory")
ConnectionFactory connectionFactory;

@Resource(lookup = "jms/newsFeedTopic")
Topic newsFeedTopic;

public String receiveMessageOld() throws JMSException {

    try (Connection connection =
            connectionFactory.createConnection()) {
        Session session = connection.createSession();
        MessageConsumer consumer =
            session.createDurableConsumer(newsFeedTopic, "mysub");
        connection.start();
        TextMessage textMessage = (TextMessage)consumer.receive();
        return textMessage.getText();
    }
}

15.6.2. Example using the simplified API

Here’s how you might do this using the simplified API.

@Resource(lookup = "jms/connectionFactory")
ConnectionFactory connectionFactory;

@Resource(lookup="jms/newsFeedTopic")
Topic newsFeedTopic;

public String receiveMessageNew() {

    try (JMSContext context = connectionFactory.createContext()){
        JMSConsumer consumer =
            context. createDurableConsumer (newsFeedTopic,"mysub");
        return consumer.receiveBody(String.class);
    }
}

Note that receiveMessageNew does not need to throw an exception.

15.6.3. Example using the simplified API and injection

Here’s how you might do this using the simplified API with the JMSContext created by injection:
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@Inject
@JMSConnectionFactory("jms/connectionFactory")
private JMSContext context;

@Resource(lookup="jms/newsFeedTopic")
Topic newsFeedTopic;

public String receiveMessageNew() {

    JMSConsumer consumer =
        context.createDurableConsumer(newsFeedTopic, "mysub");
    return consumer.receiveBody(String.class);
}

15.7. Receiving messages asynchronously (Java SE)
This example compares the use of the classic and simplified Jakarta Messaging APIs for
asynchronously receiving TextMessage objects in a Java SE environment.

15.7.1. Example using the classic API

Here’s how you might do this using the classic API, using a message listener class MyListener:

public void receiveMessagesOld()
throws JMSException, NamingException{

    InitialContext namingContext = getInitialContext();
    ConnectionFactory connectionFactory = (ConnectionFactory)
        namingContext.lookup("jms/connectionFactory");
    Queue dataQueue =
        (Queue) namingContext.lookup("jms/dataQueue");

    try (Connection connection =
            connectionFactory.createConnection();){
        Session session = connection.createSession(_AUTO_ACKNOWLEDGE_);
        MessageConsumer consumer = session.createConsumer(dataQueue);
        MessageListener messageListener = new MyListener();
        consumer.setMessageListener(messageListener);
        connection.start();

        // wait for messages to be received
        // details omitted
    }
}

15.7. Receiving messages asynchronously (Java SE)
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In the above example, getInitialContext() is an application method which returns a suitable JNDI
InitialContext.

15.7.2. Example using the simplified API

Here’s how you might do this using the simplified API.

public void receiveMessagesNew() throws NamingException {

    InitialContext namingContext = getInitialContext();
    ConnectionFactory connectionFactory = (ConnectionFactory)
        namingContext.lookup("jms/connectionFactory");
    Queue dataQueue =
        (Queue) namingContext.lookup("jms/dataQueue");

    try (JMSContext context = connectionFactory.createContext();){
        JMSConsumer consumer = context.createConsumer(demoQueue);
        MessageListener messageListener = new MyListener();
        consumer.setMessageListener(messageListener);

        // wait for messages to be received
        // details omitted
    }
}

In the above example, getInitialContext() is an application method which returns a suitable JNDI
InitialContext.

Note that receiveMessagesNew does not need to throw JMSException.

15.8. Receiving a message asynchronously from a
durable subscription (Java SE)
This example compares the use of the classic and simplified Jakarta Messaging APIs for
asynchronously receiving a TextMessage from a durable topic subscription in a Java SE environment.

15.8.1. Example using the classic API

Here’s how you might do this using the classic API, using a message listener class MyListener:

15.8. Receiving a message asynchronously from a durable subscription (Java SE)
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public void receiveMessagesOld()
        throws JMSException, NamingException{

InitialContext namingContext = getInitialContext();
ConnectionFactory connectionFactory = (ConnectionFactory)
    namingContext.lookup("jms/connectionFactory");
Topic newsFeedTopic = (Topic)
    namingContext.lookup("jms/newsFeedTopic");

    try (Connection connection =
            connectionFactory.createConnection();) {
        Session session = connection.createSession(AUTO_ACKNOWLEDGE);
        MessageConsumer consumer =
            session.createDurableConsumer(newsFeedTopic, "mysub");
        MessageListener messageListener = new MyListener();
        consumer.setMessageListener(messageListener);
        connection.start();

        // wait for messages to be received
        //details omitted
    }
}

In the above example, getInitialContext() is an application method which returns a suitable JNDI
InitialContext.

15.8.2. Example using the simplified API

Here’s how you might do this using the simplified API:

15.8. Receiving a message asynchronously from a durable subscription (Java SE)
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public void receiveMessagesNew() throws NamingException {

    InitialContext namingContext = getInitialContext();
    ConnectionFactory connectionFactory = (ConnectionFactory)
        namingContext.lookup("jms/connectionFactory");
    Topic newsfeedTopic = (Topic)
        namingContext.lookup("jms/newsfeedTopic");

    try (JMSContext context =
            connectionFactory.createContext(AUTO_ACKNOWLEDGE);){
        JMSConsumer consumer =
            context.createDurableConsumer(inboundTopic, "mysub");
        MessageListener messageListener = new MyListener();
        consumer.setMessageListener(messageListener);

        // wait for messages to be received
        // details omitted
    }
}

In the above example, getInitialContext() is an application method which returns a suitable JNDI
InitialContext.

Note that receiveMessagesNew does not need to throw JMSException.

15.9. Receiving messages in multiple threads (Java SE)
This example compares the use of the classic and simplified Jakarta Messaging APIs for
asynchronously receiving TextMessage objects from a queue using multiple threads in a Java SE
environment. In this example two threads are used, which means two sessions are needed. In this
example, both sessions use the same connection.

15.9.1. Example using the classic API

Here’s how you might do this using the classic API, using a message listener class MyListener:

15.9. Receiving messages in multiple threads (Java SE)
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public void receiveMessagesOld()
        throws JMSException, NamingException {

    InitialContext namingContext = getInitialContext();
    ConnectionFactory connectionFactory = (ConnectionFactory)
        namingContext.lookup("jms/connectionFactory");
    Queue dataQueue = (Queue) namingContext.lookup("jms/dataQueue");

    try (Connection connection =
            connectionFactory.createConnection();){
        Session s1 = connection.createSession(AUTO_ACKNOWLEDGE);
        MessageConsumer consumer1 = s1.createConsumer(dataQueue);
        MyListener messageListener1 = new MyListener("One");
        messageConsumer1.setMessageListener(messageListener1);

        Session s2 = connection.createSession(AUTO_ACKNOWLEDGE);
        MessageConsumer consumer2 = s2.createConsumer(dataQueue);
        MyListener messageListener2 = new MyListener("Two");
        messageConsumer2.setMessageListener(messageListener2);

        connection.start();

        // wait for messages to be received
        // details omitted
    }
}

In the above example, getInitialContext() is an application method which returns a suitable JNDI
InitialContext.

15.9.2. Example using the simplified API

Here’s how you might do this using the simplified API:

15.9. Receiving messages in multiple threads (Java SE)
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public void receiveMessagesNew() throws NamingException {

    InitialContext namingContext = getInitialContext();
    ConnectionFactory connectionFactory = (ConnectionFactory)
        namingContext.lookup("jms/connectionFactory");
    Queue dataQueue = (Queue) namingContext.lookup("jms/dataQueue");

    try (JMSContext context1 =
            connectionFactory.createContext(AUTO_ACKNOWLEDGE);
        JMSContext context2 =
            context1.createContext(AUTO_ACKNOWLEDGE)){

        JMSConsumer consumer1 = context1.createConsumer(dataQueue);
        MyListener messageListener1 = new MyListener("One");
        consumer1.setMessageListener(messageListener1);

        JMSConsumer consumer2 = context2.createConsumer(dataQueue);
        MyListener messageListener2 = new MyListener("Two");
        consumer2.setMessageListener(messageListener2);

        // wait for messages to be received
        // details omitted
    }
}

In the above example, getInitialContext() is an application method which returns a suitable JNDI
InitialContext.

15.10. Receiving synchronously and sending a message
in the same local transaction (Java SE)
This example compares the use of the classic and simplified Jakarta Messaging APIs for the use case in
which a Java SE application repeatedly consumes a message from one queue and forwards it to
another queue in a Java SE environment. In this example each message is received and forwarded in
the same local transaction. This means that the receiving and sending of the message must be done
using the same transacted session which is then committed.

In this example the application consumes the incoming messages synchronously. However since this is
a Java SE application the message could also be consumed asynchronously using a MessageListener.

15.10.1. Example using the classic API

Here’s how you might do this using the classic API:

15.10. Receiving synchronously and sending a message in the same local transaction (Java SE)
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public void receiveAndSendMessageOld()
        throws JMSException, NamingException {

    InitialContext namingContext = getInitialContext();
    ConnectionFactory connectionFactory = (ConnectionFactory)
        namingContext.lookup("jms/connectionFactory");
    Queue dataQueue = (Queue) namingContext.lookup("jms/dataQueue");
    Queue outboundQueue = (Queue)
        namingContext.lookup("jms/outboundQueue");

    try (Connection connection =
            connectionFactory.createConnection()){
        Session session =
            connection.createSession(SESSION_TRANSACTED);
        MessageConsumer consumer = session.createConsumer(dataQueue);
        MessageProducer producer =
            session.createProducer(outboundQueue);
        connection.start();

        TextMessage textMessage = null;
        do {
            textMessage = (TextMessage) consumer.receive(1000);
            if (textMessage!=null){
                producer.send(textMessage);
                session.commit();
                }
        } while (textMessage!=null);
    }
}

In the above example, getInitialContext() is an application method which returns a suitable JNDI
InitialContext.

15.10.2. Example using the simplified API

Here’s how you might do this using the simplified API:

15.10. Receiving synchronously and sending a message in the same local transaction (Java SE)
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public void receiveAndSendMessageNew() throws NamingException {

    InitialContext namingContext = getInitialContext();
    ConnectionFactory connectionFactory = (ConnectionFactory)
        namingContext.lookup("jms/connectionFactory");
    Queue dataQueue =
        (Queue) namingContext.lookup("jms/dataQueue");
    Queue outboundQueue =
        (Queue) namingContext.lookup("jms/outboundQueue");

    try (JMSContext context =
            connectionFactory.createContext(SESSION_TRANSACTED);){
        JMSConsumer consumer = context.createConsumer(dataQueue);
        TextMessage textMessage = null;
        do {
            textMessage = (TextMessage) consumer.receive(1000);
            if (textMessage != null) {
                context.createProducer().send(
                outboundQueue, textMessage);
                context.commit();
            }
        } while (textMessage != null);
    }
}

In the above example, getInitialContext() is an application method which returns a suitable JNDI
InitialContext.

Note that receiveAndSendMessageNew does not need to throw JMSException.

15.11. Request/reply pattern using a TemporaryQueue
(Jakarta EE)
This example compares the use of the classic and simplified Jakarta Messaging APIs for implementing
a request/reply pattern in a Jakarta EE Enterprise Beans container.

In this example, a session bean (the requestor) sends a request message to some queue (the request
queue). The setJMSReplyTo property of the request message is set to a TemporaryQueue, to which the
reply should be set. After sending the request, the session bean listens on the temporary queue until it
receives the reply.

Since the request message won’t actually be sent until the transaction is committed, the request
message is sent in a separate transaction from that used to receive the reply.

A message-driven bean (the responder) listens on the request queue for request messages. When it

15.11. Request/reply pattern using a TemporaryQueue (Jakarta EE)
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receives a message it creates a reply message and sends it to the reply queue specified in the
setJMSReplyTo property of the incoming message.

When implementing this pattern, the following features of Jakarta Messaging must be borne in mind:

• The same Connection object that was used to create the TemporaryQueue must also be used to
consume the response message from it. (This is a restriction of temporary queues).

• If the request message is sent in a transaction then the response message must be consumed in a
separate transaction. That’s why the message is sent in a separate business which has the
transactional attribute REQUIRES_NEW.

15.11.1. Example using the classic API

Here’s how you might implement the requestor this using the classic API:

There are two session beans involved in sending the request message.

The first session bean RequestReplyOld creates the creates the temporary reply queue, calls a second
bean SenderBeanOld to send the request in a separate transaction and then listens for the reply:

15.11. Request/reply pattern using a TemporaryQueue (Jakarta EE)
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@Stateless
@LocalBean
public class RequestReplyOld {

@Resource(lookup = "jms/connectionFactory")
ConnectionFactory connectionFactory;

@EJB private SenderBeanOld senderBean;

@TransactionAttribute(TransactionAttributeType.REQUIRED)
public String requestReplyOld(String request) throws JMSException {

    try (Connection connection =
            connectionFactory.createConnection()) {
        Session session = connection.createSession();
        TemporaryQueue replyQueue = session.createTemporaryQueue();

        // call a second bean to
        // send the request message in a separate transaction
        senderBean.sendRequestOld(request,replyQueue);

        // now receive the reply, using the same connection
        // as was used to create the temporary reply queue
        MessageConsumer consumer= session.createConsumer(replyQueue);
        connection.start();
        TextMessage reply = (TextMessage) consumer.receive();
        return reply.getText();
    }
}
}

The second session bean SenderBeanOld simply sends the request to the request queue in a separate
transaction:
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@Stateless
@LocalBean
public class SenderBeanOld {

@Resource(lookup = "jms/connectionFactory")
ConnectionFactory connectionFactory;

@Resource(lookup="jms/requestQueue")
Queue requestQueue;

@TransactionAttribute(TransactionAttributeType.REQUIRES_NEW)
public void sendRequestOld(
        String requestString, TemporaryQueue replyQueue)
        throws JMSException {

    try (Connection connection =
            connectionFactory.createConnection()) {
        Session session = connection.createSession();
        TextMessage requestMessage =
            session.createTextMessage(requestString);
        requestMessage.setJMSReplyTo(replyQueue);
        MessageProducer messageProducer =
            session.createProducer(requestQueue);
        messageProducer.send(requestMessage);
    }
}
}

Here is the message-driven bean RequestResponderOld which receives request messages and sends
responses:
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@MessageDriven(mappedName = "jms/requestQueue")
public class RequestResponderOld implements MessageListener {

@Resource(lookup = "jms/connectionFactory")
ConnectionFactory connectionFactory;

public void onMessage(Message message) {

    try (Connection connection =
        connectionFactory.createConnection()){
    Session session = connection.createSession();
    // extract request from request message
    String request = ((TextMessage)message).getText();
    // extract temporary reply destination from request message
    Destination replyDestination = message.getJMSReplyTo();
    // prepare response
    TextMessage replyMessage =
        session.createTextMessage("Reply to: "+request);
    // send response
    MessageProducer messageProducer =
        session.createProducer(replyDestination);
    messageProducer.send(replyMessage);
    } catch (JMSException ex) {
        // log an error here
    }
}
}

15.11.2. Example using the simplified API

Here’s how the same example might look when using the simplified API:

There are two session beans involved in sending the request message. The first bean

The first session bean RequestReplyNew creates the creates the temporary reply queue, calls a second
bean SenderBeanNew to send the request in a separate transaction and then listens for the reply:
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@Stateless
@LocalBean
public class RequestReplyNew {

@Resource(lookup = "jms/connectionFactory")
ConnectionFactory connectionFactory;

@EJB private SenderBeanNew senderBean;

@TransactionAttribute(TransactionAttributeType.REQUIRED)
public String requestReplyNew(String request) throws JMSException {

    try (JMSContext context = connectionFactory.createContext()) {
        TemporaryQueue replyQueue = context.createTemporaryQueue();

        // send the request message in a separate transaction
        // so use a separate bean
        // this call may throw JMSException
        senderBean.sendRequestNew(request,replyQueue);

        // now receive the reply, using the same connection
        // as was used to create the temporary reply queue
        JMSConsumer consumer = context.createConsumer(replyQueue);
        return consumer.receiveBody(String.class);
    }
}
}

The second session bean SenderBeanNew simply sends the request to the request queue in a separate
transaction:
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@Stateless
@LocalBean
public class SenderBeanNew {

@Resource(lookup = "jms/connectionFactory")
ConnectionFactory connectionFactory;

@Resource(lookup="jms/requestQueue")
Queue requestQueue;

@TransactionAttribute(TransactionAttributeType.REQUIRES_NEW)
public void sendRequestNew(
        String requestString, TemporaryQueue replyQueue)
        throws JMSException {

    try (JMSContext context = connectionFactory.createContext()) {
        TextMessage requestMessage =
            context.createTextMessage(requestString);
        // this call may throw JMSException
        requestMessage.setJMSReplyTo(replyQueue);
        context.createProducer().send(
            requestQueue,requestMessage);
    }
}
}

Here is the message-driven bean RequestResponderNew which receives request messages and sends
responses:
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@MessageDriven(mappedName = "jms/requestQueue")
public class RequestResponderNew implements MessageListener {

@Resource(lookup = "jms/connectionFactory")
ConnectionFactory connectionFactory;

public void onMessage(Message message) {

    try (JMSContext context = connectionFactory.createContext()){

        // extract request from request message
        // this may throw a JMSException
        String request = ((TextMessage)message).getText();

        // extract temporary reply destination from request message
        // this may throw a JMSException
        Destination replyDestination = message.getJMSReplyTo();

        // prepare response
        TextMessage replyMessage =
            context.createTextMessage("Reply to: "+request);

        // send response
        context.createProducer().send(replyDestination,replyMessage);
    } catch (JMSException ex) {
        // log an error here
    }
}
}

Note that in this example it is not possible to eliminate the need to declare to catch JMSException since
it uses methods on Message and TextMessage which throw JMSException.

15.11.3. Example using the simplified API and injection

Here’s how the same example might look when using the simplified API with the JMSContext created
by injection:

There are two session beans involved in sending the request message. The first bean

The first session bean RequestReplyNew creates the creates the temporary reply queue, calls a second
bean SenderBeanNew to send the request in a separate transaction and then listens for the reply:
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@Stateless
@LocalBean
public class RequestReplyNew {

@Inject
@JMSConnectionFactory("jms/connectionFactory2")
private JMSContext context;

@EJB private SenderBeanNew senderBean;

@TransactionAttribute(TransactionAttributeType.REQUIRED)
public String requestReplyNew(String request) throws JMSException {

    TemporaryQueue replyQueue = context.createTemporaryQueue();

    // send the request message in a separate transaction
    // so use a separate bean
    // this call may throw JMSException
    senderBean.sendRequestNew(request,replyQueue);

    // now receive the reply, using the same connection
    // as was used to create the temporary reply queue
    JMSConsumer consumer = context.createConsumer(replyQueue);
    return consumer.receiveBody(String.class);
}
}

The second session bean SenderBeanNew simply sends the request to the request queue in a separate
transaction:
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@Stateless
@LocalBean
public class SenderBeanNew {

@Inject
@JMSConnectionFactory("jms/connectionFactory")
private JMSContext context;

@Resource(lookup="jms/requestQueue")
Queue requestQueue;

@TransactionAttribute(TransactionAttributeType.REQUIRES_NEW)
public void sendRequestNew(
        String requestString, TemporaryQueue replyQueue)
        throws JMSException {

    TextMessage requestMessage =
        context.createTextMessage(requestString);
    // this call may throw JMSException
    requestMessage.setJMSReplyTo(replyQueue);
    context.createProducer().send(requestQueue,requestMessage);
}
}

Here is the message-driven bean RequestResponderNew which receives request messages and sends
responses:

15.11. Request/reply pattern using a TemporaryQueue (Jakarta EE)

150    Jakarta Messaging Final



@MessageDriven(mappedName = "jms/requestQueue")
public class RequestResponderNew implements MessageListener {

@Inject
@JMSConnectionFactory("jms/connectionFactory")
private JMSContext context;

public void onMessage(Message message) {

    try {
        // extract request from request message
        // this may throw a JMSException
        String request = ((TextMessage)message).getText();

        // extract temporary reply destination from request message
        // this may throw a JMSException
        Destination replyDestination = message.getJMSReplyTo();

        // prepare response
        TextMessage replyMessage =
            context.createTextMessage("Reply to: "+request);

        // send response
        context.createProducer().send(replyDestination,replyMessage);
    } catch (JMSException ex) {
        // log an error here
    }
}
}

Note that in this example it is not possible to eliminate the need to declare to catch JMSException since
it uses methods on Message and TextMessage which throw JMSException.
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Appendix A: Change history

A.1. Version 2.0
All changes made for Jakarta Messaging 2.0 are represented by individual issues in the Jakarta
Messaging specification issue tracker at http://http://java.net/jira/browse/JMS_SPEC. The appropriate
issue number (e.g. JMS_SPEC-64) is given for each change below.

A.1.1. Reorganisation of chapters

This introduction of the simplified API in Jakarta Messaging 2.0 has necessitated a major
reorganisation of this specification.

The structure of the Jakarta Messaging 1.1 specification reflected the domain-specific APIs introduced
in Jakarta Messaging 1.0, with section titles such as “QueueConnection” and “TopicSubscriber”. This
was an inappropriate structure even in Jakarta Messaging 1.1 since these interfaces had been
superseded in Jakarta Messaging 1.1 by the “unified” API. The addition of the simplified API in Jakarta
Messaging 2.0 makes that structure even more inappropriate.

This version of the specification has therefore been completely restructured along functional lines,
with chapter headings such as “connecting to a Jakarta Messaging provider” and “receiving messages”.
These describe each area of functionality in generic terms followed by a description of how it is
implemented in the various APIs. In general these chapters contain the same text as in the previous
version.

In addition the following completely new chapters have been added:

• chapter 12 “Use of Jakarta Messaging API in Jakarta EE applications”

• chapter 13 “Resource adapter”

A.1.2. Jakarta Messaging providers must implement both PTP and Pub-Sub
(JMS_SPEC-50)

The specification has been amended to state that a Jakarta Messaging provider must implement both
point-to-point messaging (queues) and publish-subscribe messaging (topics). This was already required
by the Jakarta EE 6 specification, section EE.2.7, but was not previously required by the Jakarta
Messaging specification itself.

The sentence that stated “Providers of Jakarta Messaging point-to-point functionality are not required
to provide publish/subscribe functionality and vice versa” has been removed.
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A.1.3. Use of Jakarta Messaging API in Jakarta EE applications (JMS_SPEC-45
and JMS_SPEC-27)

A new chapter 12 “Use of Jakarta Messaging API in Jakarta EE applications” has been added. This
chapter incorporates and clarifies various additional requirements which were previously only
described in the Jakarta EE and Jakarta Enterprise Beans specifications. Section 12.2 “Restrictions on
the use of Jakarta Messaging API in the Jakarta EE web container or Enterprise Beans container”
includes a list of methods which may not be used in a Jakarta EE web container or Enterprise Beans
container and section 12.3 “Behaviour of Jakarta Messaging sessions in the Jakarta EE web container
or Enterprise Beans container” clarifies how the arguments to createSession are mostly ignored when
used in a Jakarta EE web container or Enterprise Beans container.

The specification been updated to refer to Jakarta EE 7 rather than J2EE 1.3. A reference has also been
added to the new chapter 12 “Use of Jakarta Messaging API in Jakarta EE applications”.

Section 1.4.8 “Integration of Jakarta Messaging with the Jakarta Enterprise Beans components” has
been deleted. It is superseded by the new chapter 12 “Use of Jakarta Messaging API in Jakarta EE
applications”.

A.1.4. Resource adapter (JMS_SPEC-25)

A new chapter 13 “Resource adapter” has been added which recommends, but does not require, that a
Jakarta Messaging provider (whether it forms part of a Jakarta EE application server or not) includes a
resource adapter which connects to that Jakarta Messaging provider and which conforms to the
Jakarta Connectors specification.

A.1.5. MDB activation properties (JMS_SPEC-30, JMS_SPEC-54, JMS_SPEC-55)

A new section 13.1 “MDB activation properties” has been added which defines a set of activation
properties for use with Jakarta Messaging message-driven beans.

• The acknowledgeMode, messageSelector, destinationType, subscriptionDurability, clientId and
subscriptionName properties were previously defined in appendix B “Activation Configuration for
Message Inflow to Jakarta Messaging Endpoints” in the Jakarta Connectors specification, version
1.6. Their definition has now have been moved to the Jakarta Messaging specification.

• The connectionFactoryLookup property is new and may be used to specify the the lookup name of
an administratively-defined connection factory which will be used used by the MDB.

• The destinationLookup property is new and may be used to specify the the lookup name of an
administratively-defined queue or topic from which the MDB will receive messages.

• The activation property clientId is now optional when using a durable subscription on a topic. This
reflects the new shared durable subscriptions feature in Jakarta Messaging 2.0 which does not
require clientId to be set.

These MDB activation properties are also defined in the Jakarta Enterprise Beans specification, version
3.2.
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A.1.6. New methods to create a session (JMS_SPEC-45)

The Connection method createSession(boolean transacted, int acknowledgeMode) has sometimes been
a cause of confusion because if the transacted argument is set to true then the acknowledgeMode
argument is ignored but must still be given a value.

To simplify application code a new Connection method createSession(int sessionMode) has been added
which provides the same functionality as the previous method but with a single argument.

Examples 14.1.4 “Creating a Session” and 14.3.3.1 “Creating a durable subscription” have been updated
to use this new method.

In addition, a second new Connection method createSession() has been added. This has no arguments
and is intended for use in a Jakarta EE web container or Enterprise Beans container in the case when
there is an active Jakarta transaction, when the sessionMode supplied to createSession(int
sessionMode) is ignored.

A.1.7. New createDurableConsumer methods (JMS_SPEC-51)

The Session interface has been extended to add two createDurableConsumer methods which return a
MessageConsumer.

These are intended to replace the existing createDurableSubscription methods which return a
TopicSubscriber. A TopicSubscriber is a domain-specific interface whose use has been discouraged
since the domain-independent interfaces were introduced in Jakarta Messaging 1.1.

A.1.8. Multiple consumers now allowed on the same topic subscription
(JMS_SPEC-40)

In Jakarta Messaging 1.1, a durable or non-durable topic subscription was not permitted to have more
than one consumer at a time. This meant that the work of processing messages on a subscription could
not be shared amongst multiple threads, connections or JVMs, thereby limiting scalability. This
restriction has therefore been removed in Jakarta Messaging 2.0.

A.1.8.1. Non-durable subscriptions

In order to maintain backwards compatibility with Jakarta Messaging 1.1, the existing methods for
creating non-durable subscriptions remain unchanged. Subscriptions created using the existing
createConsumer methods on Session and TopicSession and the existing createSubscriber methods on
TopicSession, as well as the new createConsumer methods on JMSContext, will continue to be
restricted to a single consumer and are now referred to as “unshared non-durable subscriptions”.
These are described in a new section 8.3.1 “Unshared non-durable subscriptions”.

New createSharedConsumer methods have been added to Session, TopicSession and JMSContext to
create a new type of non-durable subscription which may have more than one consumer. These are
referred to as “shared non-durable subscriptions” and are identified by name and client identifier (if
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set). They are described in a new section 8.3.2 “Shared non-durable subscriptions”. The noLocal
parameter is not supported for shared non-durable subscriptions.

A.1.8.2. Durable subscriptions

In order to maintain backwards compatibility with Jakarta Messaging 1.1, the existing methods for
creating durable subscriptions also remain unchanged. Subscriptions created using the existing
createDurableSubscriber methods on Session and TopicSession, as well as the new
createDurableConsumer methods on Session, TopicSession and JMSContext) will continue to be
restricted to a single consumer and setting the client identifier will continue to be required. These now
referred to as “unshared durable subscriptions” and are described in a new section 8.3.3 “Unshared
durable subscriptions”.

New createSharedDurableConsumer methods have been added to Session, TopicSession and
JMSContext to create a new type of durable subscription which may have more than one consumer
and which do not require the client identifier to be set. These are referred to as “shared durable
subscriptions” and are described in a new section 8.3.4 “Shared durable subscriptions”. The noLocal
parameter is not supported for shared durable subscriptions.

A.1.9. Client ID optional on shared durable subscriptions (JMS_SPEC-39)

In Jakarta Messaging 1.1 it was mandatory for the client identifier to be set when creating or activating
a durable subscription.

In Jakarta Messaging 2.0, shared durable subscriptions (see A.1.8 above) will not have this restriction.
However in order to maintain backwards compatibility with Jakarta Messaging 1.1, unshared durable
subscriptions will continue to require the client identifier to be set.

A.1.10. Delivery delay (JMS_SPEC-44)

A new feature “delivery delay” has been added which allows a producing client to specify the earliest
time when a provider may make the message visible on the target destination and available for
delivery to consumers.

A new section 7.9 “Message delivery delay” and a corresponding new section 3.4.13 “JMSDeliveryTime”
have been added to describe this new feature. Section 6.2.9.2 “Order of message sends” has been
updated to state that messages with a later delivery time may be delivered after messages with an
earlier delivery time.

Section 6.2.10 “Message acknowledgment” has been updated to state that when a session’s recover
method is called the messages it now delivers may be different from those that were originally
delivered due to the delivery of messages which could not previously be delivered as they had not
reached their specified delivery time.

Section 7.1 “Producers” has been updated to mention that a client may now define a default delivery
delay for messages sent by a producer.
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A.1.11. Sending messages asynchronously (JMS_SPEC-43)

New send methods have been added to MessageProducer which allow messages to be sent
asynchronously. These methods permit the Jakarta Messaging provider to perform part of the work
involved in sending the message in a separate thread. When the send is complete, a callback method is
invoked on an object supplied by the caller. Similar methods are available for applications using the
new JMSProducer interface.

Section 7.1 “Producers” has been extended to describe these additional send methods.

A.1.12. Use of AutoCloseable (JMS_SPEC-53)

The Connection, Session, MessageProducer, MessageConsumer and QueueBrowser interfaces have
been modified to extend the java.lang.Autocloseable interface. This means that applications can create
these objects using a Java SE 7 try-with-resources statement which removes the need for applications
to explicitly call close() when these objects are no longer required.

The new JMSContext and JMSConsumer interfaces also extend the java.lang.Autocloseable interface.

Sections 6.1.8 “Closing a connection” and 6.2.15 “Closing a session” explain that the use of a try-with-
resources statement makes it easier to ensure that these objects are closed after use.

The example in section 14.1.3 “Creating a Connection” has been extended to add a second example
which uses the the try-with-resources statement.

A.1.13. JMSXDeliveryCount (JMS_SPEC-42)

The existing message property JMSXDeliveryCount has been made mandatory. It was previously
optional. This means that Jakarta Messaging providers must set this property to the number of times
the message has been delivered.

A new section 3.5.11 “JMSXDeliveryCount” has been added which describes this property and explains
how it is not required to be guaranteed in all possible cases, such as after a server failure.

Section 3.5.9 “Jakarta Messaging defined properties” has been updated accordingly. Some of the
wording in this section has been rearranged to reflect the fact that some properties are optional but
that one (JMSXDeliveryCount) is now mandatory. A clarification has been added to state that the effect
of setting a message selector on a property (such as JMSXDeliveryCount) which is set by the provider
on receive is undefined.

Section 3.4.7 “JMSRedelivered” has been amended to mention the JMSXDeliveryCount property as well.

Section 6.2.10 “Message acknowledgment”: A sentence which mentions the JMSRedelivered flag has
been amended to mention the JMSXDeliveryCount property as well.

6.2.11 “Duplicate delivery of messages”: A sentence which mentions the JMSRedelivered flag has been
amended to mention the JMSXDeliveryCount property as well..
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9.1 “Reliability”: A sentence which mentions the JMSRedelivered flag has been amended to mention the
JMSXDeliveryCount property as well.

A.1.14. Simplified API (JMS_SPEC-64)

Three new objects JMSContext, JMSProducer and JMSConsumer have been added which together
combine the functionality of the existing Connection, Session , MessageProducer and
MessageConsumer objects. This provides an alternative API for using Jakarta Messaging which is
referred to in this specification as the “simplified API”.

JMSContext objects may be created using new methods on ConnectionFactory. Jakarta EE applications
may alternatively create JMSContext objects using injection.

The simplified API is described in section 2.8 “Simplified API interfaces”.

Developers now have a choice as to whether to use the “classic” API (the Connection, Session,
MessageProducer and MessageConsumer objects) or the “simplified API” (the JMSContext,
JMSProducer and JMSConsumer objects).

The two APIs are intended to offer similar functionality. The classic API is not deprecated and will
remain part of Jakarta Messaging indefinitely.

Section 15 “Examples of the simplified API” contains a number of examples which compare the use of
the simplified and classic APIs in a number of simple Jakarta EE and Java SE use cases.

A.1.15. New method to extract the body directly from a Message (JMS_SPEC-
101)

Two new methods have been added to Message:

• <T> T getBody(Class<T> c)

• boolean isBodyAssignableTo(Class c)

The getBody method returns the message body as an object of the specified type. This provides a
convenient way to obtain the body from a newly-received Message object. It can be used either

• to return the body of a TextMessage, MapMessage or BytesMessage as a String, Map or byte[]
without the need to cast the Message first to the appropriate subtype, or

• to return the body of an ObjectMessage without the need to cast the Message to ObjectMessage,
extract the body as a Serializable, and cast it to the specified type.

The isBodyAssignableTo method is a companion method which can be used to determine whether a
subsequent call to getBody would be able to return the body of a particular Message object as a
particular type.

The example in section 14.2.3 “Unpacking a TextMessage” has been updated to demonstrate the use
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of the getBody method.

A.1.16. Subscription name characters and length

Jakarta Messaging 1.1 did not define what characters were valid in a durable subscription name, or
what length of name was supported.

Jakarta Messaging 2.0 defines a minimum set of characters that must be valid in a durable or non-
durable subscription name. It also defines that subscription names of up to 128 characters long must
be supported.

For details see section 4.2.4 “Subscription name characters and length”

A.1.17. Clarification: message may be sent using any session (JMS_SPEC-52)

The specification and javadocs have been clarified to make it clear that a message may be sent using
any session, not just the session used to create the message.

Section 6.2.4 “Optimized message implementations” has been updated accordingly.

A.1.18. Clarification: use of ExceptionListener (JMS_SPEC-49)

Section 6.1.7 “ExceptionListener” has been amended to clarify how an ExceptionListener is used:

• The existing text which states that a connection “serializes execution of its ExceptionListener” has
been extended to explain what this means.

• A note has been added to state that there are no restrictions on the use of the Jakarta Messaging
API by the listener’s onException method.

In addition, the following changes to javadoc comments have been made:

• The javadoc comments for the stop and close methods on the Connection interface have been
amended to clarify that, if an exception listener for the connection is running when stop or close
are invoked, there is no requirement for the stop or close call to wait until the exception listener
has returned before it may return.

• Similarly, the javadoc comment for the close method on the Session interface has been amended to
clarify that, if an exception listener for the session’s connection is running when close is invoked,
there is no requirement for the close call to wait until the exception listener has returned before it
may return.

• The javadoc comments for the stop and close methods on the JMSContext interface have been
amended to clarify that, if an exception listener for the JMSContext’s connection is running when
stop or close are invoked, there is no requirement for the stop or close call to wait until the
exception listener has returned before it may return.

A.1. Version 2.0

158    Jakarta Messaging Final



A.1.19. Clarification: use of stop or close from a message listener (JMS_SPEC-
48)

The specification has been clarified to clarify the required behaviour if various stop or close methods
are called from within the onMessage method of a MessageListener.

The Jakarta Messaging 1.1 specification states that the stop method on Connection and the close
methods on Connection, Session and MessageConsumer must not return until any message listeners
have returned. This means that if these methods are called from a message listener on its own
Connection, Session or MessageConsumer then deadlock would occur.

The Jakarta Messaging 2.0 specification amends the required behaviour to avoid the possibility of
deadlock.

If a MessageListener’s onMessage method calls stop or close on its own Connection, close on its own
Session, stop or close on its own JMSContext, or stop on a JMSContext which uses the same connection,
then the stop or close method will either fail and throw a jakarta.jms.IllegalStateException (for
methods on Session and Connection) or jakarta.jms.IllegalStateRuntimeException (for methods on
JMSContext), or it will succeed and stop or close the Connection, Session or JMSContext as appropriate.

However a different approach has been taken for the close methods on MessageConsumer and
JMSConsumer. A MessageListener’s onMessage method is explicitly allowed to call close on its own
MessageConsumer or JMSConsumer.

For details see the following sections:

• Section 6.1.5 “Pausing delivery of incoming messages”

• Section 6.1.8 “Closing a connection”

• Section 6.2.15 “Closing a session”

• Section 8.8 “Closing a consumer”.

The Jakarta Messaging 1.1 specification states that the close methods on Connection or Session are
exempt from the requirement that the resources of a session may only be used by one thread at a time.

In Jakarta Messaging 2.0 this exemption also applies to the close method on JMSContext, and has been
extended to cover the close methods on a MessageConsumer or JMSConsumer.

For details see the following sections:

• Section 6.2.5 “Threading restrictions on a session”

• Section 6.2.6 “Threading restrictions on a JMSContext”
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A.1.20. Clarification: use of noLocal when creating a durable subscription
(JMS_SPEC-65)

The specification has been amended to clarify the effect of setting the noLocal argument when creating
a durable subscription. This was poorly defined in Jakarta Messaging 1.1.

The new definition of noLocal is given in section 8.3.3 “Unshared durable subscriptions”. This states
that when a durable subscription is created on a topic, the noLocal argument may be used to specify
that messages published to the topic by its own connection or any other with the same client identifier
will not be added to the durable subscription. It also states that if the client identifier is unset then
setting noLocal to true will cause an exception to be thrown.

A.1.21. Clarification: message headers that are intended to be set by the
Jakarta Messaging provder (JMS_SPEC-34)

The specification has been clarified to state that the following methods on Message are not for use by
client applications and setting them does not have any effect:

setJMSDeliveryMode, setJMSExpiration, setJMSPriority, setJMSMessageID, setJMSTimestamp,
setJMSRedelivered, setJMSDeliveryTime (new header property: see section A.1.9).

Section 3.4.11 “How message header values are set” has been extended to explain this.

A.1.22. Clarification: Session methods createQueue and createTopic
(JMS_SPEC-31)

The javadoc comments for the createQueue and createTopic methods on Session and JMSContext have
been reworded to clarify that these methods simply create a Queue or Topic object which encapsulates
the name of the queue or topic and do not create the physical queue or topic in the Jakarta Messaging
provider.

In addition a note has been added to these javadoc comments to explain that although creating a
physical queue or topic is provider-specific and is typically an administrative task performed by an
administrator, some providers may create them automatically when needed.

A.1.23. Clarification: Definition of JMSExpiration (JMS_SPEC-82)

In the Jakarta Messaging 1.1 specification, section 3.4.9 “JMSExpiration”, a message’s expiration time
was defined as “the sum of the time-to-live value specified on the send method and the current GMT
value”.

However the JMSExpiration header field is a long value and the specification does not define how the
expiration time is converted to a long.

This has now been clarified to state that it is “the difference, measured in milliseconds, between the
expiration time and midnight, January 1, 1970 UTC.” This definition is chosen to be consistent with the

A.1. Version 2.0

160    Jakarta Messaging Final



java.lang.System method currentTimeMillis.

The updated text can be seen in section 3.4.9 “JMSExpiration” and section 7.8 “Message time-to-live”.

A.1.24. Correction: Reconnecting to a durable subscription (JMS_SPEC-80)

In the Jakarta Messaging 1.1 specification, section 9.3.3.2 “Reconnect to a topic using a durable
subscription” stated that “the client must be attached to the same Connection”. This was incorrect and
has now been corrected to state that the client must use a connection with the same client identifier.

In addition this section has been renamed 14.3.3.2 “Creating a consumer on an existing durable
subscription” and rewritten to make it clearer.

A.1.25. Correction: MapMessage when name is null (JMS_SPEC-77)

In the Jakarta Messaging 1.1 API documentation for jakarta.jms.MapMessage, the method setBytes
(String name, byte[] value) is defined as throwing a NullPointerException “if the name is null, or if the
name is an empty string.”

However there are eleven other methods on MapMessage of the form setSomething(name,value).
These all specify that a IllegalArgumentException is thrown “if the name is null or if the name is an
empty string.”

This appears to be an error in the API documentation. This is confirmed by the Jakarta Messaging
compliance tests which already expect setBytes to throw a IllegalArgumentException.

The API documentation for setBytes has therefore been changed to match the other methods and
specify that an IllegalArgumentException should be thrown in this case.

A.1. Version 2.0

Final Jakarta Messaging    161


	Jakarta Messaging
	Table of Contents
	Copyright
	Eclipse Foundation Specification License
	Disclaimers

	Chapter 1. Introduction
	1.1. Overview of Jakarta Messaging
	1.1.1. What is messaging?
	1.1.2. The objectives of Jakarta Messaging
	1.1.3. Jakarta Messaging domains
	1.1.4. What Jakarta Messaging does not include
	1.1.5. Java SE and Jakarta EE support

	1.2. What is new in Jakarta Messaging 2.0?

	Chapter 2. Architecture
	2.1. Overview
	2.2. What is a Jakarta Messaging application?
	2.3. Administration
	2.4. Two messaging styles
	2.5. Jakarta Messaging APIs
	2.6. Interfaces common to multiple APIs
	2.7. Classic API interfaces
	2.8. Simplified API interfaces
	2.8.1. Goals of the simplified API
	2.8.2. Key features of the simplified API

	2.9. Legacy domain-specific API interfaces
	2.10. Relationship between interfaces
	2.11. Terminology for sending and receiving messages
	2.12. Developing a Jakarta Messaging application
	2.12.1. Developing a Jakarta Messaging client

	2.13. Security
	2.14. Multi-threading
	2.15. Triggering clients
	2.16. Request/reply

	Chapter 3. Jakarta Messaging message model
	3.1. Background
	3.2. Goals
	3.3. Jakarta Messaging messages
	3.4. Message header fields
	3.4.1. JMSDestination
	3.4.2. JMSDeliveryMode
	3.4.3. JMSMessageID
	3.4.4. JMSTimestamp
	3.4.5. JMSCorrelationID
	3.4.6. JMSReplyTo
	3.4.7. JMSRedelivered
	3.4.8. JMSType
	3.4.9. JMSExpiration
	3.4.10. JMSPriority
	3.4.11. How message header values are set
	3.4.12. Overriding message header fields
	3.4.13. JMSDeliveryTime

	3.5. Message properties
	3.5.1. Property names
	3.5.2. Property values
	3.5.3. Using properties
	3.5.4. Property value conversion
	3.5.5. Property values as objects
	3.5.6. Property iteration
	3.5.7. Clearing a message’s property values
	3.5.8. Non-existent properties
	3.5.9. Jakarta Messaging defined properties
	3.5.10. Provider-specific properties
	3.5.11. JMSXDeliveryCount

	3.6. Message acknowledgment
	3.7. The Message interface
	3.8. Message selection
	3.8.1. Message selector
	3.8.1.1. Message selector syntax
	3.8.1.2. Null values
	3.8.1.3. Special notes


	3.9. Access to sent messages
	3.10. Changing the value of a received message
	3.11. Jakarta Messaging message body
	3.11.1. Clearing a message body
	3.11.2. Read-only message body
	3.11.3. Conversions provided by StreamMessage and MapMessage
	3.11.4. Messages for non-Jakarta Messaging clients

	3.12. Provider implementations of Jakarta Messaging message interfaces

	Chapter 4. Messaging domains
	4.1. Jakarta Messaging point-to-point model
	4.1.1. Overview
	4.1.2. Queue semantics
	4.1.3. Queue management
	4.1.4. Queue
	4.1.5. TemporaryQueue
	4.1.6. QueueBrowser
	4.1.7. QueueRequestor
	4.1.8. Reliability

	4.2. Jakarta Messaging publish/subscribe model
	4.2.1. Overview
	4.2.2. Topic semantics
	4.2.3. Pub/sub latency
	4.2.4. Subscription name characters and length
	4.2.5. Topic management
	4.2.6. Topic
	4.2.7. Temporary topics
	4.2.8. Recovery and redelivery
	4.2.9. Administering subscriptions
	4.2.10. TopicRequestor
	4.2.11. Reliability


	Chapter 5. Administered objects
	5.1. Overview
	5.2. Destination
	5.3. Connection factories

	Chapter 6. Connecting to a Jakarta Messaging provider
	6.1. Connections
	6.1.1. Authentication
	6.1.2. Client identifier
	6.1.3. Connection setup
	6.1.4. Starting a connection
	6.1.5. Pausing delivery of incoming messages
	6.1.6. ConnectionMetaData
	6.1.7. ExceptionListener
	6.1.8. Closing a connection

	6.2. Sessions
	6.2.1. Producer and consumer creation
	6.2.2. Creating temporary destinations
	6.2.3. Creating Destination objects
	6.2.4. Optimized message implementations
	6.2.5. Threading restrictions on a session
	6.2.6. Threading restrictions on a JMSContext
	6.2.7. Transactions
	6.2.8. Distributed transactions
	6.2.9. Message order
	6.2.9.1. Order of message receipt
	6.2.9.2. Order of message sends

	6.2.10. Message acknowledgment
	6.2.11. Duplicate delivery of messages
	6.2.12. Duplicate production of messages
	6.2.13. Serial execution of client code
	6.2.14. Concurrent message delivery
	6.2.15. Closing a session


	Chapter 7. Sending messages
	7.1. Producers
	7.2. Synchronous send
	7.3. Asynchronous send
	7.3.1. Quality of service
	7.3.2. Exceptions
	7.3.3. Message order
	7.3.4. Close, commit or rollback
	7.3.5. Restrictions on usage in Jakarta EE
	7.3.6. Message headers
	7.3.7. Restrictions on threading
	7.3.8. Use of the CompletionListener by the Jakarta Messaging provider
	7.3.9. Restrictions on the use of the Message object

	7.4. Setting message delivery options
	7.5. Setting message properties
	7.6. Setting message headers
	7.7. Message delivery mode
	7.8. Message time-to-live
	7.9. Message delivery delay
	7.10. JMSProducer method chaining

	Chapter 8. Receiving messages
	8.1. Consumers
	8.2. Creating a consumer on a queue
	8.3. Creating a consumer on a topic
	8.3.1. Unshared non-durable subscriptions
	8.3.2. Shared non-durable subscriptions
	8.3.3. Unshared durable subscriptions
	8.3.4. Shared durable subscriptions

	8.4. Starting message delivery
	8.5. Receiving messages synchronously
	8.6. Receiving message bodies synchronously
	8.7. Receiving messages asynchronously
	8.8. Closing a consumer

	Chapter 9. Other Jakarta Messaging facilities
	9.1. Reliability
	9.2. Method inheritance across messaging domains

	Chapter 10. Jakarta Messaging exceptions
	10.1. Overview
	10.2. JMSException and JMSRuntimeException
	10.3. Standard exceptions

	Chapter 11. Jakarta Messaging application server facilities
	11.1. Overview
	11.2. Concurrent processing of a subscription’s messages
	11.2.1. Session
	11.2.2. ServerSession
	11.2.3. ServerSessionPool
	11.2.4. ConnectionConsumer
	11.2.5. How a ConnectionConsumer uses a ServerSession
	11.2.6. How an application server implements a ServerSession
	11.2.7. The result

	11.3. Support for distributed transactions
	11.3.1. XA connection factory
	11.3.2. XA connection
	11.3.3. XA session
	11.3.4. XAJMSContext
	11.3.5. XAResource

	11.4. Jakarta Messaging application server interfaces

	Chapter 12. Use of Jakarta Messaging API in Jakarta EE applications
	12.1. Overview
	12.2. Restrictions on the use of Jakarta Messaging API in the Jakarta EE web container or Enterprise Beans container
	12.3. Behaviour of Jakarta Messaging sessions in the Jakarta EE web container or Enterprise Beans container
	12.4. Injection of JMSContext objects
	12.4.1. Support for injection
	12.4.2. Container-managed and application-managed JMSContexts
	12.4.3. Injection syntax
	12.4.4. Scope of injected JMSContext objects
	12.4.5. Restrictions on use of injected JMSContext objects


	Chapter 13. Resource adapter
	13.1. MDB activation properties

	Chapter 14. Examples of the classic API
	14.1. Preparing to send and receive messages
	14.1.1. Getting a ConnectionFactory
	14.1.2. Getting a Destination
	14.1.3. Creating a Connection
	14.1.4. Creating a Session
	14.1.5. Creating a MessageProducer
	14.1.6. Creating a MessageConsumer
	14.1.7. Starting message delivery
	14.1.8. Using a TextMessage

	14.2. Sending and receiving messages
	14.2.1. Sending a message
	14.2.2. Receiving a message synchronously
	14.2.3. Unpacking a TextMessage

	14.3. Other messaging features
	14.3.1. Receiving messages asynchronously
	14.3.2. Using message selection
	14.3.3. Using durable subscriptions
	14.3.3.1. Creating a durable subscription
	14.3.3.2. Creating a consumer on an existing durable subscription


	14.4. Jakarta Messaging message types
	14.4.1. Creating a TextMessage
	14.4.2. Unpacking a TextMessage
	14.4.3. Creating a BytesMessage
	14.4.4. Unpacking a BytesMessage
	14.4.5. Creating a MapMessage
	14.4.6. Unpacking a MapMessage
	14.4.7. Creating a StreamMessage
	14.4.8. Unpacking a StreamMessage
	14.4.9. Creating an ObjectMessage
	14.4.10. Unpacking an ObjectMessage


	Chapter 15. Examples of the simplified API
	15.1. Sending a message (Jakarta EE)
	15.1.1. Example using the classic API
	15.1.2. Example using the simplified API
	15.1.3. Example using the simplified API and injection

	15.2. Sending a message (Java SE)
	15.2.1. Example using the classic API
	15.2.2. Example using the simplified API

	15.3. Sending a message with properties (Java SE)
	15.3.1. Example using the classic API
	15.3.2. Example using the simplified API

	15.4. Receiving a message synchronously (Jakarta EE)
	15.4.1. Example using the classic API
	15.4.2. Example using the simplified API
	15.4.3. Example using the simplified API and injection

	15.5. Receiving a message synchronously (Java SE)
	15.5.1. Example using the classic API
	15.5.2. Example using the simplified API

	15.6. Receiving a message synchronously from a durable subscription (Jakarta EE)
	15.6.1. Example using the classic API
	15.6.2. Example using the simplified API
	15.6.3. Example using the simplified API and injection

	15.7. Receiving messages asynchronously (Java SE)
	15.7.1. Example using the classic API
	15.7.2. Example using the simplified API

	15.8. Receiving a message asynchronously from a durable subscription (Java SE)
	15.8.1. Example using the classic API
	15.8.2. Example using the simplified API

	15.9. Receiving messages in multiple threads (Java SE)
	15.9.1. Example using the classic API
	15.9.2. Example using the simplified API

	15.10. Receiving synchronously and sending a message in the same local transaction (Java SE)
	15.10.1. Example using the classic API
	15.10.2. Example using the simplified API

	15.11. Request/reply pattern using a TemporaryQueue (Jakarta EE)
	15.11.1. Example using the classic API
	15.11.2. Example using the simplified API
	15.11.3. Example using the simplified API and injection


	Appendix A: Change history
	A.1. Version 2.0
	A.1.1. Reorganisation of chapters
	A.1.2. Jakarta Messaging providers must implement both PTP and Pub-Sub (JMS_SPEC-50)
	A.1.3. Use of Jakarta Messaging API in Jakarta EE applications (JMS_SPEC-45 and JMS_SPEC-27)
	A.1.4. Resource adapter (JMS_SPEC-25)
	A.1.5. MDB activation properties (JMS_SPEC-30, JMS_SPEC-54, JMS_SPEC-55)
	A.1.6. New methods to create a session (JMS_SPEC-45)
	A.1.7. New createDurableConsumer methods (JMS_SPEC-51)
	A.1.8. Multiple consumers now allowed on the same topic subscription (JMS_SPEC-40)
	A.1.8.1. Non-durable subscriptions
	A.1.8.2. Durable subscriptions

	A.1.9. Client ID optional on shared durable subscriptions (JMS_SPEC-39)
	A.1.10. Delivery delay (JMS_SPEC-44)
	A.1.11. Sending messages asynchronously (JMS_SPEC-43)
	A.1.12. Use of AutoCloseable (JMS_SPEC-53)
	A.1.13. JMSXDeliveryCount (JMS_SPEC-42)
	A.1.14. Simplified API (JMS_SPEC-64)
	A.1.15. New method to extract the body directly from a Message (JMS_SPEC-101)
	A.1.16. Subscription name characters and length
	A.1.17. Clarification: message may be sent using any session (JMS_SPEC-52)
	A.1.18. Clarification: use of ExceptionListener (JMS_SPEC-49)
	A.1.19. Clarification: use of stop or close from a message listener (JMS_SPEC-48)
	A.1.20. Clarification: use of noLocal when creating a durable subscription (JMS_SPEC-65)
	A.1.21. Clarification: message headers that are intended to be set by the Jakarta Messaging provder (JMS_SPEC-34)
	A.1.22. Clarification: Session methods createQueue and createTopic (JMS_SPEC-31)
	A.1.23. Clarification: Definition of JMSExpiration (JMS_SPEC-82)
	A.1.24. Correction: Reconnecting to a durable subscription (JMS_SPEC-80)
	A.1.25. Correction: MapMessage when name is null (JMS_SPEC-77)



