JAKARTA EE

Jakarta Interceptors

Jakarta Interceptors Team, https://projects.eclipse.org/projects/ee4j.interceptors

2.0, August 29, 2020: Final

Table of Contents

Copyright
Eclipse Foundation Specification License
Disclaimers
1. Overview
1.1. Specification Scope
1.2. Revision History
1.3. Relationship to Other Specifications
1.4. Document Conventions
2. Interceptor Programming Contract
2.1. Terminology
2.2. Definition of Interceptor Classes and Interceptor Methods
2.3. Interceptor Life Cycle
2.3.1. Interceptor Environment
2.4. Invocation Context
2.5. Exceptions
2.6. Business Method Interceptor Methods
2.7. Interceptor Methods for Lifecycle Event Callbacks
2.7.1. Exceptions
2.8. Timeout Method Interceptor Methods
2.9. Constructor- and Method-level Interceptors
2.10. Default Interceptors
3. Associating Interceptors with Classes and Methods using Interceptor Bindings
3.1. Interceptor Binding Types
3.1.1. Interceptor binding types with additional interceptor bindings
3.1.2. Other sources of interceptor bindings
3.2. Declaring the Interceptor Bindings of an Interceptor
3.3. Binding an Interceptor to a Component
3.4. Interceptor Resolution
3.4.1. Interceptors with multiple bindings
3.4.2. Interceptor binding types with members
4. Associating Interceptors with Classes and Methods using the Interceptors Annotation
5. Interceptor Ordering
5.1. Enabling Interceptors
5.2. Interceptor Ordering Rules
5.2.1. Use of the Priority Annotation in Ordering Interceptors
5.3. Excluding Interceptors

O 00 J O O O kR RN NN

W N NN NN N NDNID DIDNIDN N R R 2R ol |l | s e
S 0 99 9 U W N R, OO O VW VW VW o0 Uk WKL, o o

Appendix A: Bibliography
Appendix B: Change Log

32
33

Preface

Specification: Jakarta Interceptors
Version: 2.0
Status: Final

Release: August 29, 2020

Final Jakarta Interceptors 1

Eclipse Foundation Specification License

Copyright

Copyright (c) 2018, 2020 Eclipse Foundation.

Eclipse Foundation Specification License

By using and/or copying this document, or the Eclipse Foundation document from which this statement
is linked, you (the licensee) agree that you have read, understood, and will comply with the following
terms and conditions:

Permission to copy, and distribute the contents of this document, or the Eclipse Foundation document
from which this statement is linked, in any medium for any purpose and without fee or royalty is
hereby granted, provided that you include the following on ALL copies of the document, or portions
thereof, that you use:

¢ link or URL to the original Eclipse Foundation document.

 All existing copyright notices, or if one does not exist, a notice (hypertext is preferred, but a textual
representation is permitted) of the form: "Copyright © [$date-of-document] Eclipse Foundation, Inc.
https://www.eclipse.org/legal/efsl.php"

Inclusion of the full text of this NOTICE must be provided. We request that authorship attribution be
provided in any software, documents, or other items or products that you create pursuant to the
implementation of the contents of this document, or any portion thereof.

No right to create modifications or derivatives of Eclipse Foundation documents is granted pursuant to
this license, except anyone may prepare and distribute derivative works and portions of this document
in software that implements the specification, in supporting materials accompanying such software,
and in documentation of such software, PROVIDED that all such works include the notice below.
HOWEVER, the publication of derivative works of this document for use as a technical specification is
expressly prohibited.

The notice is:

"Copyright © 2018, 2020 Eclipse Foundation. This software or document includes material copied from
or derived from Jakarta® Interceptors https://jakarta.ee/specifications/interceptors/2.0/"

Disclaimers

THIS DOCUMENT IS PROVIDED "AS IS,” AND THE COPYRIGHT HOLDERS AND THE ECLIPSE
FOUNDATION MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DOCUMENT ARE SUITABLE FOR ANY
PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD
PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

2 Jakarta Interceptors Final

https://www.eclipse.org/legal/efsl.php
https://jakarta.ee/specifications/interceptors/2.0/

Eclipse Foundation Specification License

THE COPYRIGHT HOLDERS AND THE ECLIPSE FOUNDATION WILL NOT BE LIABLE FOR ANY DIRECT,
INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR
THE PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of the copyright holders or the Eclipse Foundation may NOT be used in
advertising or publicity pertaining to this document or its contents without specific, written prior
permission. Title to copyright in this document will at all times remain with copyright holders.

Final Jakarta Interceptors 3

1.1. Specification Scope

Chapter 1. Overview

1.1. Specification Scope

Jakarta Interceptors defines a means of interposing on business method invocations and specific
events—such as lifecycle events and timeout events—that occur on instances of Jakarta EE components
and other managed classes.

An interceptor method is either a method of the component class (called the target class) or a method
of a separate class (called the interceptor class) that is associated with the target class.

1.2. Revision History

This document is an update to the Jakarta Interceptors specification 1.2. Version 1.1 was based on the
Interceptors chapter of the Enterprise JavaBeansTM 3.0 specification [1]. Version 1.2 included
interceptor binding definitions that were originally defined in the Contexts and Dependency Injection
for the Jakarta EE Platform (CDI) specification [3].

The change log for the current version is found in Change Log.

1.3. Relationship to Other Specifications

The Jakarta EE Platform specification requires support for interceptors. The use of interceptors defined
by means of the Interceptors annotation is required to be supported for Jakarta Enterprise Beans and
Managed Bean components, including in the absence of CDI. When CDI is enabled, the use of
interceptors defined both by means of interceptor binding annotations and by means of the
Interceptors annotation is required to be supported for component classes that support injection, as
described in the section “Annotations and Injection” of the Jakarta EE Platform specification [6].

Both the Jakarta Enterprise Beans and the CDI specifications provide extensions to this specification.
Other specifications may choose to do so in the future. Such specifications are referred to in this
document as extension specifications. This document outlines permissible extensions to this
specification and defines requirements for extension specifications.

1.4. Document Conventions

The regular Times font is used for information that is prescriptive by the Interceptors specification.

The italic Times font is used for paragraphs that contain descriptive information, such as notes
describing typical use, or notes clarifying the text with prescriptive specification.

Java code and sample data fragments are formatted as shown in figure [1.1]:

4 Jakarta Interceptors Final

1.4. Document Conventions

package com.example.hello;

public class Hello {
public static void main(String args[]) {
System.out.println("Hello World");
}

Final Jakarta Interceptors 5

2.1. Terminology

Chapter 2. Interceptor Programming Contract

2.1. Terminology

The following terminology is used in this document:
* Interceptor class : a class containing interceptor methods that is designed to be associated with a
target class, method, or constructor.
» Interceptor: instance of an interceptor class.

* Interceptor method : a method of an interceptor class or of a target class that is invoked to interpose
on the invocation of a method of the target class, a constructor of the target class, a lifecycle event
of the target class, or a timeout method of the target class.

2.2. Definition of Interceptor Classes and Interceptor
Methods

An interceptor method for a target class may be declared in the target class, in an interceptor class
associated with the target class, or in a superclass of the target class or interceptor class.

Any number of interceptor classes may be associated with a target class. See Chapter Interceptor
Ordering for rules on interceptor ordering.

An interceptor class must not be abstract and must have a public no-arg constructor.

This specification defines the interceptor method types listed below. Extension specifications may
define additional interceptor method types.

* Around-invoke interceptor methods (annotated with the jakarta.interceptor.AroundInvoke
annotation). Around-invoke interceptor methods interpose on the invocation of business methods.

* Around-timeout interceptor methods (annotated with the jakarta.interceptor.AroundTimeout
annotation). Around-timeout interceptor methods interpose on the invocation of timeout methods,
in response to timer events.

» Post-construct interceptor methods (annotated with the jakarta.annotation.PostConstruct
annotation). Post-construct interceptor methods are invoked after dependency injection has been
completed on the target instance.

* Pre-destroy interceptor methods (annotated with the jakarta.annotation.PreDestroy annotation).
Pre-destroy interceptor methods are invoked before the target instance and all interceptor
instances associated with it are destroyed by the container.

* Around-construct interceptor methods (annotated with the jakarta.interceptor.AroundConstruct
annotation). Around-construct interceptor methods interpose on the invocation of the constructor
of the target instance.

6 Jakarta Interceptors Final

2.3. Interceptor Life Cycle

Post-construct, pre-destroy, and around-construct interceptor methods are collectively referred to as
lifecycle callback interceptor methods . Extension specifications may define additional lifecycle callback
events and lifecycle callback interceptor method types.

Up to one interceptor method of each interceptor method type may be defined in the same class. More
specifically, up to one around-invoke interceptor method, one around-timeout interceptor method, and
one lifecycle callback interceptor method for each of the different lifecycle events may be defined in
the same class. Only the interceptor methods of the interceptor class that are relevant for the given
invocation context are invoked. For example, when a business method is invoked, around-invoke
interceptor methods are invoked, but any around-construct, around-timeout, post-construct, or pre-
destroy methods are ignored.

A single interceptor method may be defined to interpose on any combination of business methods,
timeout methods, and lifecycle callback events.

Interceptor methods and interceptor classes may be defined for a class by means of metadata
annotations or, optionally, by means of a deployment descriptor.

Interceptor classes may be associated with the target class using either interceptor binding annotations
(see Associating Interceptors with Classes and Methods using Interceptor Bindings) or the
jakarta.interceptor.Interceptors annotation (see Associating Interceptors with Classes and Methods
using the Interceptors Annotation). Typically only one interceptor association type is used for any
target class.

An extension specification may use a deployment descriptor to specify the invocation order of
interceptors or to override the order specified in metadata annotations. A deployment descriptor can
optionally be used to define interceptors, to define default interceptors, or to associate interceptors
with a target class. For example, the Jakarta Enterprise Beans specification [2] requires support for the
ejb-jar.xml deployment descriptor and the CDI specification [3] requires support for the beans.xml
deployment descriptor.

2.3. Interceptor Life Cycle

The lifecycle of an interceptor instance is the same as that of the target instance with which it is
associated.

Except as noted below, when the target instance is created, a corresponding instance is created for
each associated interceptor class. These interceptor instances are destroyed if the target instance fails
to be created or when the target instance is destroyed by the container.

An interceptor instance may be the target of dependency injection. Dependency injection is performed
when the interceptor instance is created, using the naming context of the associated target class.

With the exception of aroundConstruct lifecycle callback interceptor methods, no interceptor methods
are invoked until after dependency injection has been completed on both the interceptor instances and

the target .

Final Jakarta Interceptors 7

2.4. Invocation Context

Post-construct interceptor methods for the target instance are invoked after dependency injection has
been completed on the target instance.

Pre-destroy interceptor methods are invoked before the target instance and all interceptor instances
associated with it are destroyed."”

The following rules apply specifically to around-construct lifecycle callback interceptor methods:

* Around-construct lifecycle callback interceptor methods are invoked after dependency injection
has been completed on the instances of all interceptor classes associated with the target class.
Injection of the target component into interceptor instances that are invoked during the around-
construct lifecycle callback is not supported.

* The target instance is created after the last interceptor method in the around-construct interceptor
chain invokes the InvocationContext.proceed method. If the constructor for the target instance
supports injection, such constructor injection is performed. If the InvocationContext.proceed
method is not invoked by an interceptor method, the target instance will not be created.

* An around-construct interceptor method can access the constructed instance using the
InvocationContext.getTarget method after the InvocationContext.proceed method completes.

* Dependency injection on the target instance other than constructor injection is not completed until
after the invocations of all interceptor methods in the around-construct interceptor chain complete
successfully. Around-construct lifecycle callback interceptor methods should therefore exercise
caution when invoking methods of the target instance since dependency injection on the target
instance will not have been completed.

2.3.1. Interceptor Environment

An interceptor class shares the enterprise naming context of its associated target class. Annotations
and/or XML deployment descriptor elements for dependency injection or for direct JNDI lookup refer
to this shared naming context.

Around-invoke and around-timeout interceptor methods run in the same Java thread as the associated
target method. Around-construct interceptor methods run in the same Java thread as the target
constructor.

It is possible to carry state across multiple interceptor method invocations for a single method
invocation or lifecycle callback event in the context data of the InvocationContext object. The
InvocationContext object also provides information that enables interceptor methods to control the
behavior of the interceptor invocation chain, including whether the next method in the chain is
invoked and the values of its parameters and result.

2.4. Invocation Context

The InvocationContext object provides information that enables interceptor methods to control the
behavior of the invocation chain.

8 Jakarta Interceptors Final

2.4. Invocation Context

public interface InvocationContext {

public Object getTarget();

public Object getTimer();

public Method getMethod();

public Constructor<?> getConstructor();

public Object[] getParameters();

public void setParameters(Object[] params);

public java.util.Map<String, Object> getContextData();
public Object proceed() throws Exception;

The same InvocationContext instance is passed to each interceptor method for a given target class
method or lifecycle event interception.

The InvocationContext instance allows an interceptor method to save information in the Map obtained
via the getContextData method. This information can subsequently be retrieved and/or updated by
other interceptor methods in the invocation chain, and thus serves as a means to pass contextual data
between interceptors. The contextual data is not sharable across separate target class method or or
lifecycle callback event invocations. The lifecycle of the InvocationContext instance is otherwise
unspecified.

If interceptor methods are invoked as a result of the invocation on a web service endpoint, the map
returned by getContextData will be the JAX-WS MessageContext [4].

The getTarget method returns the associated target instance. For around-construct lifecycle callback
interceptor methods, getTarget returns null if called before the proceed method returns.

The getTimer method returns the timer object associated with a timeout method invocation. The
getTimer method returns null for interceptor method types other than around-timeout interceptor
methods.

The getMethod method returns the method of the target class for which the current interceptor method
was invoked. The getMethod returns null in a lifecycle callback interceptor method for which there is
no corresponding lifecycle callback method declared in the target class (or inherited from a superclass)
or in an around-construct lifecycle callback interceptor method.

The getConstructor method returns the constructor of the target class for which the current around-
construct interceptor method was invoked. The getConstructor method returns null for interceptor
method types other than around-construct interceptor methods.

The getParameters method returns the parameters of the method or constructor invocation. If the
setParameters method has been called, getParameters returns the values to which the parameters have
been set.

The setParameters method modifies the parameters used for the invocation of the target class method
or constructor. Modifying the parameter values does not affect the determination of the method or the

Final Jakarta Interceptors 9

2.5. Exceptions

constructor that is invoked on the target class. The parameter types must match the types for the target
class method or constructor, and the number of parameters supplied must equal the number of
parameters on the target class method or constructor), or the I1legalArqumentException is thrown to
the setParameters call.

The proceed method causes the invocation of the next interceptor method in the chain or, when called
from the last around-invoke or around-timeout interceptor method, the target class method. For
around-construct lifecycle callback interceptor methods, the invocation of the proceed method in the
last interceptor method in the chain causes the target instance to be created. Interceptor methods must
always call the InvocationContext.proceed method or no subsequent interceptor methods, target class
method, or lifecycle callback methods will be invoked, or—in the case of around-construct interceptor
methods—the target instance will not be created. The proceed method returns the result of the next
method invoked. If a method is of type void, the invocation of the proceed method returns null . For
around-construct lifecycle callback interceptor methods, the invocation of proceed in the last
interceptor method in the chain causes the target instance to be created. For all other lifecycle callback
interceptor methods, if there is no lifecycle callback interceptor method defined on the target class, the
invocation of proceed in the last interceptor method in the chain is a no-op ', and nul1 is returned.

2.5. Exceptions

Interceptor methods are allowed to throw runtime exceptions or any checked exceptions that the
associated target method or constructor allows within its throws clause.

Interceptor methods are allowed to catch and suppress exceptions and to recover by calling the
InvocationContext.proceed method.

The invocation of the InvocationContext.proceed method throws the same exception as any thrown by
the associated target method unless an interceptor method further down the Java call stack has caught
it and thrown a different exception or suppressed the exception. Exceptions and initialization and/or
cleanup operations should typically be handled in try/catch/finally blocks around the proceed
method.

2.6. Business Method Interceptor Methods

Interceptor methods that interpose on business method invocations are denoted by the AroundInvoke
annotation.

Around-invoke methods may be declared in interceptor classes, in the superclasses of interceptor
classes, in the target class, and/or in superclasses of the target class. However, only one around-invoke
method may be declared in a given class.

Around-invoke methods can have public , private , protected , or package level access. An around-
invoke method must not be declared as abstract, final or static.

Around-invoke methods have the following signature:

10 Jakarta Interceptors Final

2.7. Interceptor Methods for Lifecycle Event Callbacks

Object <METHOD>(InvocationContext)

Note: An around-invoke interceptor method may be declared to throw any checked exceptions that the
associated target method allows within its throws clause. It may be declared to throw the
java.lang.Exception, for example, if it interposes on several methods that can throw unrelated checked
exceptions.

An around-invoke method can invoke any component or resource that the method it is intercepting
can invoke.

In general, an around-invoke method invocation occurs within the same transaction and security
context as the method on which it is interposing. However, note that the transaction context may be
changed by transactional interceptor methods in the invocation chain, such as those defined by the
Jakarta Transaction API specification [7].

The following example defines MonitoringInterceptor, which is used to interpose on ShoppingCart
business methods:

({TYPE, METHOD})
(RUNTIME)
public Monitored {}

public class MonitoringInterceptor {
public Object monitorInvocation(InvocationContext ctx) {

//... log invocation data ...
return ctx.proceed();

public class ShoppingCart {
public void placeOrder(Order o) {

}

2.7. Interceptor Methods for Lifecycle Event Callbacks

The AroundConstruct annotation specifies a lifecycle callback interceptor method that interposes on the
invocation of the target instance’s constructor.

Final Jakarta Interceptors 11

2.7. Interceptor Methods for Lifecycle Event Callbacks

The PostConstruct annotation specifies a lifecycle callback interceptor method that is invoked after the
target instance has been constructed and dependency injection on that instance has been completed,
but before any business method or other event, such as a timer event, is invoked on the target instance.

The PreDestroy annotation specifies a lifecycle callback interceptor method that interposes on the
target instance’s removal by the container.

Extension specifications are permitted to define additional lifecycle events and lifecycle callback
interceptor methods types.

Around-construct interceptor methods may be only declared in interceptor classes and/or superclasses
of interceptor classes. Around-construct interceptor methods must not be declared in the target class
or in its superclasses.

All other lifecycle callback interceptor methods can be declared in an interceptor class, superclass of
an interceptor class, in the target class, and/or in a superclass of the target class.

A single lifecycle callback interceptor method may be used to interpose on multiple lifecycle callback
events.

A given class may not have more than one lifecycle callback interceptor method for the same lifecycle
event. Any subset or combination of lifecycle callback annotations may otherwise be specified on
methods declared in a given class.

Lifecycle callback interceptor methods are invoked in an unspecified security context. Lifecycle
callback interceptor methods are invoked in a transaction context determined by their target class
and/or method ",

Lifecycle callback interceptor methods can have public, private, protected, or package level access. A
lifecycle callback interceptor method must not be declared as abstract or final . A lifecycle callback
interceptor method must not be declared as static exceptin an application client.

Lifecycle callback interceptor methods declared in an interceptor class or superclass of an interceptor
class must have one of the following signatures:

void <METHOD>(InvocationContext)
Object <METHOD>(InvocationContext)

Note: A lifecycle callback interceptor method may be declared to throw checked exceptions including the
java.lang.Exception if the same interceptor method interposes on business or timeout methods in addition
to lifecycle events. If such an interceptor method returns a value, the value is ignored by the container
when the method is invoked to interpose on a lifecycle event.

Lifecycle callback interceptor methods declared in a target class or in a superclass of a target class
must have the following signature:

12 Jakarta Interceptors Final

2.7. Interceptor Methods for Lifecycle Event Callbacks

void <METHOD>()

The following example declares lifecycle callback interceptor methods in both the interceptor class
and the target class. Rules for interceptor ordering are described in chapter 5 Interceptor Ordering.

public class MyInterceptor {

public void someMethod(InvocationContext ctx) {

ctx.proceed();

public void someOtherMethod(InvocationContext ctx) {

ctx.proceed();

(MyInterceptor.class)

public class ShoppingCartBean implements ShoppingCart {
private float total;
private Vector productCodes;

public int someShoppingMethod() {

}
void endShoppingCart() {

2.7.1. Exceptions

When invoked to interpose on lifecycle events, lifecycle callback interceptor methods may throw
runtime exceptions, but—except for around-construct methods—may not throw checked exceptions.

In addition to the rules specified in section 2.5 Exceptions, the following rules apply to the lifecycle
callback interceptor methods:

* A lifecycle callback interceptor method declared in an interceptor class or in a superclass of an

Final Jakarta Interceptors 13

2.8. Timeout Method Interceptor Methods

interceptor class may catch an exception thrown by another lifecycle callback interceptor method
in the invocation chain, and clean up before returning.

* Pre-destroy interceptor methods are not invoked when the target instance and the interceptors are
discarded as a result of such exceptions: the lifecycle callback interceptor methods in the chain
should perform any necessary clean-up operations as the interceptor chain unwinds.

2.8. Timeout Method Interceptor Methods

Interceptor methods that interpose on timeout methods are denoted by the AroundTimeout annotation.

Note: Timeout methods are currently specific to Jakarta Enterprise Beans, although Timer Service
functionality may be extended to other specifications in the future, and extension specifications may
define events that may be interposed on by around-timeout methods. The enterprise beans Timer Service,
defined by the Jakarta Enterprise Beans specification [2], is a container-provided service that allows the
Bean Provider to register enterprise beans for timer callbacks according to a calendar-based schedule, at
a specified time, after a specified elapsed time, or at specified intervals. The timer callbacks registered
with the Timer Service are called timeout methods.

Around-timeout methods may be declared in interceptor classes, in superclasses of interceptor classes,
in the target class, and/or in superclasses of the target class. However, only one around-timeout
method may be declared in a given class.

Around-timeout methods can have public , private , protected , or package level access. An around-
timeout method must not be declared as abstract, final or static.

Around-timeout methods have the following signature:
Object <METHOD>(InvocationContext)

Note: An around-timeout interceptor method should not throw application exceptions, but it may be
declared to throw checked exceptions or the java.lang.Exception if the same interceptor method
interposes on business methods in addition to the timeout methods.

An around-timeout method can invoke any component or resource that its corresponding timeout
method can invoke.

An around-timeout method invocation occurs within the same transaction ' and security context as
the timeout method on which it is interposing.

The InvocationContext.getTimer method allows an around-timeout method to retrieve the timer object
associated with the timeout.

In the following example around-timeout interceptor is associated with two timeout methods:

14 Jakarta Interceptors Final

2.9. Constructor- and Method-level Interceptors

public class MyInterceptor {
private Logger logger = ...;

private Object aroundTimeout(InvocationContext ctx)
throws Exception {
logger.info("processing:
return ctx.proceed();

n

+ ctx.getTimer().getInfo());

(MyInterceptor.class)

public class CacheBean {
private Data data;

(minute="*/30",hour="*",info="update-cache")
public void refresh(Timer t) {
data.refresh();

}

(dayOfMonth="1",info="validate-cache")
public void validate(Timer t) {
data.validate();
}

2.9. Constructor- and Method-level Interceptors

Method-level interceptors are interceptor classes directly associated with a specific business or timeout
method of the target class. Constructor-level interceptors are interceptor classes directly associated
with a constructor of the target class.

For example, an around-invoke interceptor method may be applied only to a specific business method
of the target class— independent of the other methods of the target class—by using a method-level
interceptor. Likewise, an around-timeout interceptor method may be applied only to a specific timeout
method on the target class, independent of the other timeout methods of the target class.

Method-level interceptors may not be associated with a lifecycle callback method of the target class.
The same interceptor may be applied to more than one business or timeout method of the target class.

If a method-level interceptor is applied to more than one method of a associated target class this does
not affect the relationship between the interceptor instance and the target class—only a single instance

Final Jakarta Interceptors 15

2.9. Constructor- and Method-level Interceptors

of the interceptor class is created per target class instance.

In the following example only the placeOrder method will be monitored:

public class ShoppingCart {
public void placeOrder() {

}

In the following example, the MyInterceptor interceptor is applied to a subset of the business methods
of the session bean. Note that the created and removed methods of the MyInterceptor interceptor will
not be invoked:

public class MyInterceptor {

public Object around_invoke(InvocationContext ctx) { ... }
public void created(InvocationContext ctx) { ... }
public void removed(InvocationContext ctx) { ... }

public class MyBean {
void init() { ... }
public void notIntercepted() { ... }

(org.acme.MyInterceptor.class)
public void someMethod() { ... }

(org.acme.MyInterceptor.class)
public void anotherMethod() { ... }

In the following example, the ValidationInterceptor interceptor interposes on the bean constructor
only, and the validateMethod interceptor method will not be invoked:

16 Jakarta Interceptors Final

2.9. Constructor- and Method-level Interceptors

@Inherited

@InterceptorBinding
@Target({CONSTRUCTOR, METHOD})
@Retention(RUNTIME)

public @interface ValidateSpecial {}

@ValidateSpecial
public class ValidationInterceptor {
@AroundConstruct

public void validateConstructor(InvocationContext ctx) { ... }

@AroundInvoke
public Object validateMethod(InvocationContext ctx) { ... }
}

public class SomeBean {
@ValidateSpecial
SomeBean(...) {

}

public void someMethod() {

}

In the following example, the validateConstructor method of the ValidationInterceptor interceptor
interposes on the bean constructor, and the validateMethod method of the interceptor interposes on the
anotherMethod business method of the bean.

public class SomeBean {
@ValidateSpecial
SomeBean(...) {

}

public void someMethod() {

}

@ValidateSpecial
public void anotherMethod() {

}

Final Jakarta Interceptors 17

2.10. Default Interceptors

2.10. Default Interceptors

Default interceptors are interceptors that apply to a set of target classes. An extension specification
may support the use of a deployment descriptor or annotations to define default interceptors and their
relative ordering.

[1] If a PostConstruct interceptor method is declared in the interceptor class or a superclass of the interceptor class, it is
not invoked when the interceptor instance itself is created.

[2] If a PreDestroy interceptor method is declared in the interceptor class or a superclass of the interceptor class, it is not
invoked when the interceptor instance itself is destroyed.

[3] If the last parameter is a vararg parameter of type T, it is considered be equivalent to a parameter of type T{opening-
bracket}{closing-bracket}.

[4] In case of the PostConstruct interceptor, if there is no callback method defined on the target class, the invocation of
InvocationContext.proceed method in the last interceptor method in the chain validates the target instance.

[5] In general, a lifecycle callback interceptor method will be invoked in an unspecified transaction context. Note
however that singleton and stateful session beans support the use of a transaction context for the invocation of lifecycle
callback interceptor methods (see the Jakarta Enterprise Beans specification [2]). The transaction context may be also
changed by transactional interceptors in the invocation chain.

[6] Note that the transaction context may be changed by transactional interceptors in the invocation chain.

18 Jakarta Interceptors Final

3.1. Interceptor Binding Types

Chapter 3. Associating Interceptors with
Classes and Methods using Interceptor
Bindings

Interceptor bindings are intermediate annotations that may be used to associate interceptors with any
component that is not itself an interceptor or decorator see [6].

3.1. Interceptor Binding Types

An interceptor binding type is a Java annotation defined as Retention(RUNTIME). Typically an
interceptor binding is defined as Target({TYPE, METHOD, CONSTRUCTOR}) or any subset of valid target

types.

An interceptor binding type may be declared by specifying the InterceptorBinding meta-annotation.

({TYPE, METHOD})
(RUNTIME)
public Monitored {}

3.1.1. Interceptor binding types with additional interceptor bindings

An interceptor binding type may declare other interceptor bindings.

({TYPE, METHOD})
(RUNTIME)

public DataAccess {}

Interceptor bindings are transitive—an interceptor binding declared by an interceptor binding type is
inherited by all components and other interceptor binding types that declare that interceptor binding

type.

An interceptor binding type can only be applied to an interceptor binding type defining a subset of its
target types. For example, interceptor binding types declared Target(TYPE) may not be applied to
interceptor binding types declared Target({TYPE, METHOD}).

Final Jakarta Interceptors 19

3.2. Declaring the Interceptor Bindings of an Interceptor

3.1.2. Other sources of interceptor bindings

An extension specification may define other sources of interceptor bindings, such as by CDI
stereotypes.

3.2. Declaring the Interceptor Bindings of an Interceptor

The interceptor bindings of an interceptor are specified by annotating the interceptor class with the
interceptor binding types and the Interceptor annotation and are called the set of interceptor bindings
for the interceptor.

public class MonitoringInterceptor {

public Object monitorInvocation(InvocationContext ctx)
throws Exception { ... }

An interceptor class may declare multiple interceptor bindings.
Multiple interceptors may declare the same interceptor bindings.

If an interceptor does not declare an Interceptor annotation, it can be bound to components using the
Interceptors annotation.

An extension specification may define other ways of declaring an interceptor and binding an
interceptor to a component, such as by means of a deployment descriptor.

An interceptor declared using the Interceptor annotation should specify at least one interceptor
binding. If an interceptor declared using the Interceptor annotation does not declare any intercep- tor
binding, non-portable behavior results.

3.3. Binding an Interceptor to a Component

An interceptor may be bound to a component by annotating the component class or a method or
constructor of the component class with the interceptor binding type.

In the following example, the MonitoringInterceptor is applied to the target class. It will therefore apply
to all business methods of the class.

public class ShoppingCart { ... }

In this example, the MonitoringInterceptor is applied to a single method:

20 Jakarta Interceptors Final

3.4. Interceptor Resolution
public class ShoppingCart {

public void placeOrder() {

A component class or a method or constructor of a component class may declare multiple interceptor
bindings.

The set of interceptor bindings for a method or constructor are those applied to the target class
combined with those applied at method level or constructor level. Note that the interceptor bindings
applied to the target class may include those inherited from its superclasses. The CDI specification
rules for the inheritance of type-level metadata apply to the inheritance of interceptor bindings from
superclasses of the target class. See [3].

An interceptor binding declared on a method or constructor replaces an interceptor binding of the
same type declared at class level or inherited from a superclass .

An extension specification may define additional rules for combining interceptor bindings, such as
interceptors defined via a CDI stereotype.

If a component class declares or inherits a class-level interceptor binding, it must not be declared
final, or have any non-static, non-private, final methods. If a component has a class-level interceptor
binding and is declared final or has a non-static, non-private, final method, the container
automatically detects the problem and treats it as a definition error, and causes deployment to fail.

If a non-static, non-private method of a component class declares a method-level interceptor binding,
neither the method nor the component class may be declared final. If a non-static, non-private, final
method of a component has a method-level interceptor binding, the container automatically detects
the problem and treats it as a definition error, and causes deployment to fail.

3.4. Interceptor Resolution

The process of matching interceptors to a given business method, timeout method, or lifecycle event of
a component is called interceptor resolution.

For a lifecycle event other than instance construction, the interceptor bindings include the interceptor
bindings declared or inherited by the component at the class level, including, recursively, interceptor
bindings declared as meta-annotations of other interceptor bindings.

For a business method, timeout method, or constructor, the interceptor bindings include the
interceptor bindings declared or inherited by the component at the class level, including, recursively,

Final Jakarta Interceptors 21

3.4. Interceptor Resolution

interceptor bindings declared as meta-annotations of other interceptor bindings, together with all
interceptor bindings declared on the constructor or method, including, recursively, interceptor
bindings declared as meta-annotations of other interceptor bindings.

An interceptor is bound to a method or constructor if:

* The method or constructor has all the interceptor bindings of the interceptor. A method or
constructor has an interceptor binding of an interceptor if it has an interceptor binding with (a) the
same type and (b) the same annotation member value for each member. An extension specification
may further refine this rule. For example, the CDI specification [3] adds the
jakarta.enterprise.util.Nonbinding annotation, causing member values to be ignored by the
resolution process.

* The interceptor intercepts the given kind of lifecycle event or method.

* The interceptor is enabled. An interceptor is enabled if the Priority annotation is applied to the
interceptor class . An extension specification may define other means of enabling interceptors.
For example, the CDI specification enables an interceptor if the interceptor class is listed under the
<interceptors> element of the beans.xml file for the bean archive.

3.4.1. Interceptors with multiple bindings

An interceptor class may specify multiple interceptor bindings.

(1100)
public class MonitoringlLoggingInterceptor {

public Object aroundInvoke(InvocationContext context)
throws Exception { ... }

This interceptor will be bound to all methods of this component:
public class ShoppingCart { ... }
The MonitoringlLoggingInterceptor will not be bound to methods of this component, since the Logged

interceptor binding does not appear:

public class ShoppingCart {
public void placeOrder() { ... }
}

22 Jakarta Interceptors Final

3.4. Interceptor Resolution

However, the MonitoringloggingInterceptor will be bound to the placeOrder method of this component:

@Monitored
public class ShoppingCart {
@Logged
public void placeOrder() { ... }

3.4.2. Interceptor binding types with members

Interceptor binding types may have annotation members.

@Inherited

@InterceptorBinding

@Target({TYPE, METHOD})

@Retention(RUNTIME)

public @interface Monitored {
boolean persistent();

}
Any interceptor with that interceptor binding type must select a member value:

@Monitored(persistent=true) @Interceptor @Priority(2100)
public class PersistentMonitoringInterceptor {
@AroundInvoke
public Object monitorInvocation(InvocationContext ctx)
throws Exception { ... }

The PersistentMonitoringInterceptor applies to this component:

@Monitored(persistent=true)
public class ShoppingCart { ... }

But not to this component:

@Monitored(persistent=false)
public class SimpleShoppingCart { ... }

Annotation member values are compared using the equals method.

Final Jakarta Interceptors 23

3.4. Interceptor Resolution

Array-valued or annotation-valued members of an interceptor binding type are not supported. An
extension specification may add support for these member types. For example the CDI specification [3]
adds the jakarta.enterprise.util.Nonbinding annotation, allowing array-valued or annotation-valued
members to be used on the annotation type, but ignored by the resolution process.

If the set of interceptor bindings of a component class or interceptor, including bindings inherited
from CDI stereotypes [3] and other interceptor bindings, has two instances of a certain interceptor
binding type and the instances have different values of some annotation member, the container
automatically detects the problem, treats it as a definition error, and causes deployment to fail.

[7] This requirement follows the rules from the Jakarta Annotations specification, section 2.1 [5[.
[8] The Priority annotation also orders interceptors. See Chapter 5 Interceptor Ordering.

24 Jakarta Interceptors Final

Chapter 4. Associating Interceptors with Classes and Methods using the Interceptors Annotation

Chapter 4. Associating Interceptors with
Classes and Methods using the Interceptors
Annotation

The Interceptors annotation can be used to denote interceptor classes and associate one or more
interceptor classes with a target class, and/or one or more of its methods, and/or a constructor of the
target class.

The Interceptors annotation can be applied to the target class or to a method or a constructor declared
in the target class or in a superclass of the target class:

* Method-level around-invoke and around-timeout interceptors can be defined by applying the
Interceptors annotation to the method for which the around-invoke or around-timeout interceptor
methods are to be invoked.

* Constructor-level interceptors can be defined by applying the Interceptors annotation to the
constructor for which the around-construct interceptor methods are to be invoked.

Constructor- and method-level interceptors are invoked in addition to any interceptors declared in the
target class, in an interceptor class associated with the target class, or in a superclass of the target class
or interceptor class, and in addition to any default interceptors (if supported).

If multiple interceptor classes are specified in the Interceptors annotation, the interceptor methods of
these classes are invoked in the order in which the classes are specified. The ordering rules for
interceptors are defined in Chapter 5 Interceptor Ordering.

The Interceptor annotation is ignored during the processing of classes bound using the Interceptors
annotation. It will continue to be observed on such classes when used in the context of interceptor
binding.

An extension specification may support the use of a deployment descriptor to associate interceptor
classes with a target class, and/or method or constructor of a target class, and to specify the order of
interceptor invocation or override metadata specified by annotations.

In the following example, the around-invoke methods specified by both the MyInterceptor and the
MyOtherInterceptor classes will be invoked when the otherMethod method is called. The rules for
ordering these interceptors are defined in Chapter 5 Interceptor Ordering.

Final Jakarta Interceptors 25

Chapter 4. Associating Interceptors with Classes and Methods using the Interceptors Annotation

@Stateless
@Interceptors(org.acme.MyInterceptor.class)
public class MyBean {

public void someMethod() {

}

@Interceptors(org.acme.MyOtherInterceptor.class)
public void otherMethod() {

}

26 Jakarta Interceptors Final

5.1. Enabling Interceptors

Chapter 5. Interceptor Ordering

5.1. Enabling Interceptors

Only interceptors that are enabled are eligible to be invoked.

Interceptors declared using interceptor bindings are enabled using the Priority annotation (see Section
Use of the Priority Annotation in Ordering Interceptors). The Priority annotation also controls
interceptor ordering (see Section 5.2 Interceptor Ordering Rules).

Interceptors declared using the Interceptors annotation are enabled by that annotation. Using the
Interceptors annotation to associate interceptor classes with a target class or a method or constructor
of a target class enables them for that target class, method, or constructor. The order in which the
interceptor classes are specified in the Interceptors annotation controls interceptor ordering (see
Section 5.2 Interceptor Ordering Rules). Interceptor methods declared in the target class or in a
superclass of the target class are enabled unless overridden.

An extension specification may define alternative mechanisms (e.g., a deployment descriptor such as
the CDI beans.xml [3] or the Jakarta Enterprise Beans ejb-jar.xml deployment descriptor [2]) to enable
and order interceptors, to override the order specified by means of annotations, or to disable
interceptors.

Note: The InvocationContext object allows interceptor methods to control the behavior of the invocation
chain, including whether the next method in the chain is invoked and the values of its parameters and
result. See Section 2.4 Invocation Context.

5.2. Interceptor Ordering Rules

For each interceptor method type (i.e., around-invoke, around-timeout, post-construct, etc.), the
following interceptor invocation ordering rules apply, except as specified otherwise by an extension
specification.

* Default interceptors are invoked first.

» Default interceptors are invoked in the order defined by the extension specification (e.g., by their
order in the deployment descriptor).

» If a default interceptor class has superclasses, interceptor methods declared in the interceptor
class’s superclasses are invoked before the interceptor method declared in the interceptor class
itself, most general superclass first.

* Interceptors declared by applying the Interceptors annotation at class-level to the target class are
invoked next.

* Interceptor methods declared in the interceptor classes listed in the Interceptors annotation are
invoked in the same order as the specification of the interceptor classes in that annotation.

Final Jakarta Interceptors 27

5.2. Interceptor Ordering Rules

* If an interceptor class declared by applying the Interceptors annotation at class-level has
superclasses, interceptor methods declared in the interceptor class’s superclasses are invoked
before the interceptor method declared in the interceptor class itself, most general superclass first.

This specification does not define the semantics of applying the Interceptors

o annotation to a superclass of the target class, and thus the corresponding interceptor
methods may or may not be invoked. Applications that specify the Interceptors
annotation on a superclass of the target class will not be portable.

* Interceptors declared by applying the Interceptors annotation at method- or constructor-level are
invoked next.

* Interceptor methods declared in the interceptor classes listed in the Interceptors annotation are
invoked in the same order as the specification of the interceptor classes in that annotation.

 If an interceptor class declared by applying the Interceptors annotation at method- or constructor-
level has superclasses, interceptor methods declared in the interceptor class’s superclasses are
invoked before the interceptor method declared in the interceptor class itself, most general
superclass first.

* Interceptors declared using interceptor bindings are invoked next.

* All interceptors specified using interceptor binding annotations visible on the target class (e.g.,
specified on the class or visible on the class because they were declared with the Inherited
annotation) are combined with all binding annotations on the target method and sorted by the
priorities specified by the Priority annotation; and then the interceptor methods are invoked in
order of priority. The Priority annotation is described in Section Use of the Priority Annotation in
Ordering Interceptors.

 If an interceptor class declared using interceptor bindings has superclasses, interceptor methods
declared in the interceptor class’s superclasses are invoked before the interceptor method declared
in the interceptor class itself, most general superclass first.

* Interceptor methods declared in the target class or in any superclass of the target class are invoked
last.

« If the target class has superclasses, interceptor methods declared in the target class’s superclasses
are invoked before an interceptor method declared in the target class itself, most general
superclass first.

 If an interceptor method is overridden by another method (regardless whether that method is itself
an interceptor method), it will not be invoked.

5.2.1. Use of the Priority Annotation in Ordering Interceptors

The Priority annotation can be used to enable and order interceptors associated with components that
use interceptor bindings. The required value element of the Priority annotation determines the
ordering. Interceptors with smaller priority values are called first. If more than one interceptor has the
same priority, the relative order of those interceptors is undefined.

28 Jakarta Interceptors Final

5.2. Interceptor Ordering Rules

(100)

public class MonitoringInterceptor {

public Object monitorInvocation(InvocationContext ctx)
throws Exception { ... }

The Priority annotation is ignored when computing the invocation order of interceptors bound to a
component using the Interceptors annotation.

The following priority values are defined for interceptor ordering when used with the Priority
annotation. Interceptors with lower priority values are invoked earlier in the interceptor chain.

Interceptor.Priority.PLATFORM_BEFORE =0
Interceptor.Priority.LIBRARY_BEFORE = 1000
Interceptor.Priority.APPLICATION = 2000
Interceptor.Priority.LIBRARY_AFTER = 3000
Interceptor.Priority.PLATFORM_AFTER = 4000

These values define the following interceptor ranges to order interceptors for a specific interposed
method or event in the interceptor chain:

Interceptors defined by the Jakarta EE Platform specifications that are to be executed at the
beginning of the interceptor chain should have priority values in the range PLATFORM_BEFORE up
until LIBRARY_BEFORE.

Interceptors defined by extension libraries that are intended to be executed earlier in the
interceptor chain, but after interceptors in the range up until LIBRARY_BEFORE should have priority
values in the range LIBRARY_BEFORE up until APPLICATION.

Interceptors defined by applications should be in the range APPLICATION up until LIBRARY_AFTER.

Interceptors defined by extension libraries that are intended to be executed later in the interceptor
chain should have priority values in the range LIBRARY_AFTER up until PLATFORM_AFTER.

Interceptors defined by the Jakarta EE Platform specifications that are to be executed at the end of
the interceptor chain should have priority values at PLATFORM_AFTER or higher.

An interceptor that must be invoked before or after another defined interceptor can choose any
appropriate value.

Negative priority values are reserved for future use by this specification and should not be used.

The following example defines an extension library interceptor that is to be executed before any
application interceptor, but after any early platform interceptor:

Final Jakarta Interceptors 29

5.3. Excluding Interceptors

(Interceptor.Priority.LIBRARY_BEFORE+10)

public class ValidationInterceptor { ... }

5.3. Excluding Interceptors

Interceptors may be excluded from execution by means of the ExcludeClassInterceptors annotation
and the ExcludeDefaultInterceptors annotation.

The ExcludeClassInterceptors annotation can be used to exclude the invocation of the class-level
interceptors defined by means of the Interceptors annotation.

The ExcludeDefaultInterceptors annotation can be used to exclude the invocation of default
interceptors for a target class or—when applied to a target class constructor or method—to exclude the
invocation of default interceptors for a particular constructor or method.

An extension specification may define other means for excluding interceptors from execution, such as
by means of a deployment descriptor.

In the following example interceptors will be invoked in the following order when someMethod is called:
SomeInterceptor, AnotherInterceptor, MyInterceptor.

({org.acme.SomeInterceptor.class,
org.acme.AnotherInterceptor.class})
public class MyBean {

(org.acme.MyInterceptor.class)
public void someMethod() {

}

In the following example only the interceptor MyInterceptor will be invoked when someMethod is called.
The ExcludeClassInterceptors annotation is used to exclude the invocation of the class-level
interceptors.

30 Jakarta Interceptors Final

5.3. Excluding Interceptors

@Stateless
@lnterceptors(org.acme.AnotherInterceptor.class)
public class MyBean {

@Interceptors(org.acme.MyInterceptor.class)
@ExcludeClassInterceptors
public void someMethod() {

}

In the next example, only the interceptor MyInterceptor will be invoked when someMethod is called. The
ExcludeDefaultInterceptors annotation is used to exclude the invocation of the default interceptors (if
any).

@Stateless
public class MyBean {

@ExcludeDefaultInterceptors
@Interceptors(org.acme.MyInterceptor.class)

public void someMethod() {

}

Final Jakarta Interceptors 31

Appendix A: Bibliography

Appendix A: Bibliography

* Enterprise JavaBeansTM, version 3.0 . http://jcp.org/en/jsr/detail?id=220.
» Jakarta™ Enterprise Beans, version 4.0 . https://jakarta.ee/specifications/enterprise-beans/4.0/.

 Jakarta™ Contexts and Dependency Injection (CDI specification) version 3.0 . https://jakarta.ee/
specifications/cdi/3.0/ .

 Jakarta™ XML Web Services version 3.0 . https://jakarta.ee/specifications/xml-web-services/3.0/ .
» Jakarta™ Annotations version 2.0 . https://jakarta.ee/specifications/annotations/2.0/.
* Jakarta™ EE Platform 9 . https://jakarta.ee/specifications/platform/9/ .

» Jakarta™ Transaction version 2.0 . https://jakarta.ee/specifications/transactions/2.0/ .

32 Jakarta Interceptors Final

http://jcp.org/en/jsr/detail?id=220
https://jakarta.ee/specifications/enterprise-beans/4.0/
https://jakarta.ee/specifications/cdi/3.0/
https://jakarta.ee/specifications/cdi/3.0/
https://jakarta.ee/specifications/xml-web-services/3.0/
https://jakarta.ee/specifications/annotations/2.0/
https://jakarta.ee/specifications/platform/9/
https://jakarta.ee/specifications/transactions/2.0/

Appendix B: Change Log

Appendix B: Change Log

Clarified Relationship to Other Specifications to be consistent with the Jakarta EE Platform
specification with regard to when interceptors defined by means of the Interceptors annotation and
interceptors defined by means of interceptor bindings are required to be supported.

Clarified terminology in sections Terminology and Definition of Interceptor Classes and Interceptor
Methods.

Noted that around-construct interceptors run in the same thread as the target constructor in section
Interceptor Environment.

Clarified that around-construct interceptor methods may throw checked exceptions.

Clarified distinction between core requirements and the latitude available to extension specifications.
Reworded to indicate that deployment descriptors are specific to extension specifications.

Clarified that interceptor binding may not be used to associate interceptors with decorators.

Corrected bug in section Interceptor binding types with additional interceptor bindings: An interceptor
binding type can only be applied to an interceptor binding type defining a subset of its target types.

Removed inconsistency whereby only around-construct lifecycle callback interceptors could declare
interceptor binding types defined other than as Target(TYPE) .

Clarified when Priority annotation is ignored.

Added section Enabling Interceptors to Interceptor Ordering to centralize existing requirements on
enabling interceptors and separate concept of the enabling of interceptors from the ordering of
interceptors.

Combined interceptor ordering rules into a single algorithm in section Interceptor Ordering Rules.
Factored out section Excluding Interceptors on excluding interceptors.

Clarified that ExcludeClassInterceptors applies only to interceptors defined by means of the
Interceptors annotation.

Made numerous editorial cleanup changes, and reorganized document for clarity.

Final Jakarta Interceptors 33

	Jakarta Interceptors
	Table of Contents
	Copyright
	Eclipse Foundation Specification License
	Disclaimers

	Chapter 1. Overview
	1.1. Specification Scope
	1.2. Revision History
	1.3. Relationship to Other Specifications
	1.4. Document Conventions

	Chapter 2. Interceptor Programming Contract
	2.1. Terminology
	2.2. Definition of Interceptor Classes and Interceptor Methods
	2.3. Interceptor Life Cycle
	2.3.1. Interceptor Environment

	2.4. Invocation Context
	2.5. Exceptions
	2.6. Business Method Interceptor Methods
	2.7. Interceptor Methods for Lifecycle Event Callbacks
	2.7.1. Exceptions

	2.8. Timeout Method Interceptor Methods
	2.9. Constructor- and Method-level Interceptors
	2.10. Default Interceptors

	Chapter 3. Associating Interceptors with Classes and Methods using Interceptor Bindings
	3.1. Interceptor Binding Types
	3.1.1. Interceptor binding types with additional interceptor bindings
	3.1.2. Other sources of interceptor bindings

	3.2. Declaring the Interceptor Bindings of an Interceptor
	3.3. Binding an Interceptor to a Component
	3.4. Interceptor Resolution
	3.4.1. Interceptors with multiple bindings
	3.4.2. Interceptor binding types with members

	Chapter 4. Associating Interceptors with Classes and Methods using the Interceptors Annotation
	Chapter 5. Interceptor Ordering
	5.1. Enabling Interceptors
	5.2. Interceptor Ordering Rules
	5.2.1. Use of the Priority Annotation in Ordering Interceptors

	5.3. Excluding Interceptors

	Appendix A: Bibliography
	Appendix B: Change Log

