
Jakarta Debugging Support for Other
Languages

Jakarta Server Pages Team, https://projects.eclipse.org/projects/ee4j.jsp

2.0, October 07, 2020:

Table of Contents
Eclipse Foundation Specification License . 1

Disclaimers. 2

1. Goal . 3

2. Terminology. 4

3. Approach . 5

3.1. Single Translation . 5

3.2. Multiple Translations . 5

3.3. Diagram. 6

4. Scope . 7

4.1. Variables . 7

4.2. Multi-Level Source View . 7

4.3. Finding Source Files . 7

4.4. Multiple Source Files per Class File . 7

5. Source Map Format . 8

5.1. General Format . 8

5.2. Header . 8

5.3. StratumSection . 8

5.4. FileSection. 9

5.5. LineSection . 9

5.6. VendorSection . 11

5.7. EndSection . 11

5.8. Embedded Source Maps . 12

5.9. SMAP Syntax . 12

6. SMAP Resolution. 15

6.1. LineInfo Composition Algorithm . 16

6.2. Resolution Example . 17

7. JPDA Support . 21

8. SourceDebugExtension Support . 22

8.1. SourceDebugExtension Access . 22

8.2. SourceDebugExtension Class File Attribute . 22

9. Example . 24

9.1. Input Source. 24

9.2. Language Processor . 24

9.3. Post Processor . 26

9.4. Debugging. 26

Specification: Jakarta Debugging Support for Other Languages

Version: 2.0

Status: Final Release

Release: October 07, 2020

Copyright (c) 2018, 2020 Eclipse Foundation.

Eclipse Foundation Specification License
By using and/or copying this document, or the Eclipse Foundation document from which this statement
is linked, you (the licensee) agree that you have read, understood, and will comply with the following
terms and conditions:

Permission to copy, and distribute the contents of this document, or the Eclipse Foundation document
from which this statement is linked, in any medium for any purpose and without fee or royalty is
hereby granted, provided that you include the following on ALL copies of the document, or portions
thereof, that you use:

• link or URL to the original Eclipse Foundation document.

• All existing copyright notices, or if one does not exist, a notice (hypertext is preferred, but a textual
representation is permitted) of the form: "Copyright © [$date-of-document] Eclipse Foundation, Inc.
<<url to this license>>"

Inclusion of the full text of this NOTICE must be provided. We request that authorship attribution be
provided in any software, documents, or other items or products that you create pursuant to the
implementation of the contents of this document, or any portion thereof.

No right to create modifications or derivatives of Eclipse Foundation documents is granted pursuant to
this license, except anyone may prepare and distribute derivative works and portions of this document
in software that implements the specification, in supporting materials accompanying such software,
and in documentation of such software, PROVIDED that all such works include the notice below.
HOWEVER, the publication of derivative works of this document for use as a technical specification is
expressly prohibited.

The notice is:

"Copyright © 2018, 2020 Eclipse Foundation. This software or document includes material copied from
or derived from Jakarta ® Debugging Support for Other Languages
https://jakarta.ee/specifications/debugging/2.0/"

Eclipse Foundation Specification License

Jakarta Debugging Support for Other Languages 1

https://jakarta.ee/specifications/debugging/2.0/

Disclaimers

THIS DOCUMENT IS PROVIDED "AS IS," AND THE COPYRIGHT HOLDERS AND THE ECLIPSE
FOUNDATION MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DOCUMENT ARE SUITABLE FOR ANY
PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD
PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

THE COPYRIGHT HOLDERS AND THE ECLIPSE FOUNDATION WILL NOT BE LIABLE FOR ANY DIRECT,
INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR
THE PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of the copyright holders or the Eclipse Foundation may NOT be used in
advertising or publicity pertaining to this document or its contents without specific, written prior
permission. Title to copyright in this document will at all times remain with copyright holders.

Eclipse Foundation Specification License

2 Jakarta Debugging Support for Other Languages

Chapter 1. Goal
A mechanism is needed by which programs executed under the JavaTM virtual machine but written in
languages other than the Java programming language, can be debugged with references to the original
source (for example, source file and line number references).

Constraints:

• No change to the Java programming language.

• Optional change to Java programming language compiler.

• No change to JPDA clients (debuggers, …) for basic functionality. With the exception being, tools
that arbitrarily prohibit non-Java programming language source.

• Minimal change to Java virtual machine.

• No change to the Java platform class libraries.

Chapter 1. Goal

Jakarta Debugging Support for Other Languages 3

Chapter 2. Terminology
Term Definition

final-source
The final form of source. This source will be compiled into a class file.
Typically, final-source is Java programming language source.

translated-source
Source that will be translated by a language-processor into another
language or form.

language-processor
Converts translated-source to final-source or to different translated-
source.

class file A collection of bytes in Java virtual machine class file format.

compiler
Compiler which converts final-source to class files. For example, javac
is a compiler.

post-processor
Takes a class file and a Source Map File as input; generates a class file
as output. Inserts a SourceDebugExtension attribute.

Source Map
SMAP

Specifies the mapping of source between one or more sets of input
source and the output source. See: Source Map Format.

Source Map File
SMAP-file

Specifies the mapping created by a language-processor between
translated-source input and the resultant output source. It is a Source
Map stored in a file in Source Map Format.

stratum
A view of a class from a particular, named, programming language
level.

JPDA The Java Platform Debugger Architecture.

JDI

The Java Debug Interface, which is the high-level Java programming
language interface of the Java Platform Debugger Architecture. See: JDI
Specification.

SourceDebugExtension
attribute

A Java virtual machine class file attribute that holds information about
the source. In this case, the information is a Source Map in Source Map
Format. The source is mapped to final-source (output source). The
Source Map has potentially multiple sets of input source (strata). See:
SourceDebugExtension Class File Attribute

Chapter 2. Terminology

4 Jakarta Debugging Support for Other Languages

https://docs.oracle.com/javase/1.5.0/docs/guide/jpda/index.html
https://docs.oracle.com/javase/1.5.0/docs/guide/jpda/
https://docs.oracle.com/javase/1.5.0/docs/guide/jpda/jdi/
https://docs.oracle.com/javase/1.5.0/docs/guide/jpda/jdi/

Chapter 3. Approach

3.1. Single Translation
A language-processor translates translated-source to final-source (the case of translation from one
translated-source to another translated-source, is addressed below). It also creates a second output, an
SMAP-file, whose format is described in Source Map Format. This file describes the mapping between
input source and output source (e.g. line number and source file).

The final-source generated by the language-processor is compiled by the compiler.

The post-processor takes the class file generated by the compiler and the SMAP-file as input. A
SourceDebugExtension attribute containing the SMAP in the SMAP-file is added to the class file and the
new class file is written.

Optionally, the compiler may take both final-source and the SMAP-file as input, and perform both
compilation and installation of the SourceDebugExtension.

When the resultant program is debugged using a debugging tool based on the Java Debug Interface
(JDI) of JPDA, the final-source line number information is converted to the specified language view
(strata).

3.2. Multiple Translations
A language-processor might translate source into source which will become input to another language-
processor, and so on. Eventually, after possibly many translated-source forms, final-source is produced.
Each translation produces SMAP information. This information must be preserved and placed in
context, so that each stratum can be mapped to the final-source.

A language-processor checks for an SMAP-file in a location parallel to that of the input source. For
example, if the source repository is a file system and the input source is located at path name.extension
then path name.extension.smap will be checked for an SMAP. The input SMAPs will be copied into the
generated SMAP. See Embedded Source Maps for specifics on the embedding of input SMAPs.

In the case of multiple translations, the post-processor must resolve the embedded SMAPs. See SMAP
Resolution.

Note that final-source need not be Java programming language source, as compilers for other
languages may directly generate class files, including the SourceFile and LineNumberTable class file
attributes. SMAPs and the mechanism presented here are still useful for handling multiple
translations.

A programming language implementor, directly generating class files might also choose to generate
SMAPs (thus functioning as both language-processor and compiler) since the SMAP is useful for
describing source configurations (such as multiple source files per class file) which cannot be

3.1. Single Translation

Jakarta Debugging Support for Other Languages 5

represented with the SourceFile and LineNumberTable attributes. In this case, the input is translated-
source and the final-source is represented in the attributes but is never generated.

3.3. Diagram
This diagram demonstrates data flow. The particular case shown has two levels of translation, with file
inclusion on the second level (as is the case in the example in SMAP Resolution).

Where TS is translated-source and FS is final-source.

3.3. Diagram

6 Jakarta Debugging Support for Other Languages

Chapter 4. Scope

4.1. Variables
The complexity of mapping semantics (like variable and data views) across languages is such that this
feature has not been included in this version of the specification and will be considered for a future
version.

4.2. Multi-Level Source View
The ability to choose the source level to view is addressed in this specification. These are referred to as
strata.

4.3. Finding Source Files
Currently, final-source is found by combining the follow elements:

• A source path

• The package name converted to a directory path

• The source file name from a JDI call (derived from the SourceFile class file attribute)

Since existing debuggers use this mechanism (the only way for an existing debugger to find translated-
source) each aspect must be addressed:

• The source path must be set-up to include translated-source directories

• Source must be placed in a directory corresponding to the package

• The JDI call must return the translated-source name.

For debuggers written against the new APIs, a new method has been added which returns the source
path - this makes the translated-source directory structure flexible.

4.4. Multiple Source Files per Class File
When an inclusion mechanism is used, a class file will contain source from multiple translated-source
files. The SourceFile attribute of class files only associates one source file with a class file which is one
reason the approach of simply rewriting the SourceFile and LineNumberTable attributes had to be
abandoned. The SMAP allows a virtually unlimited number of source files per stratum.

4.1. Variables

Jakarta Debugging Support for Other Languages 7

Chapter 5. Source Map Format
A Source Map (SMAP) describes a mapping between source positions in an input language (translated-
source) and source positions in a generated output language. A view of the source through such a
mapping is called a stratum. The SMAP-file contains an unresolved SMAP. The SourceDebugExtension
class file attribute, when used as described in this document, contains an SMAP. The SMAP stored in a
SourceDebugExtension attribute must be resolved, and thus will have no embedded SMAPs and will
have the final-source language as the output language.

An SMAP consists of a header and one or more sections of mapping information.

There are currently seven types of section: stratum sections, file sections, line sections, vendor
sections, end sections, and open and close embedded sections. New section types may be added in the
future - to facilitate this, any unknown sections must be ignored without error.

The semantics of each section is discussed below. For clarity, an informal description of the syntax of
each section is included in the discussion. See the formal SMAP syntax for syntax questions.

5.1. General Format
The SMAP consists of lines of Unicode text, with a concrete representation of UTF-8. Line termination is
with line-feed, carriage-return or carriage-return followed by line-feed. Because SMAPs are included in
class files, size of the SMAP was an important constraint on the format chosen for them.

5.2. Header
The first line of an SMAP is the four letters SMAP which identifies it as an SMAP. The next line is the
name of the generated file. This name is without path information (and thus if the generated file is
final-source, the name should match the SourceFile class file attribute). The last line of the header is
the default stratum for this class. The default stratum is the stratum used when a debugger does not
explicitly specify interest in another stratum. In an unresolved SMAP the default stratum can be
unspecified (blank line). In a resolved SMAP the default stratum must be specified. A specified stratum
must either be one represented with a stratum section or Java which indicates the standard final-
source information should be used by default.

5.3. StratumSection
An SMAP may map more than one translated-source to the output source (the output source is final-
source if the SMAP is in a SourceDebugExtension). A view of the source is a stratum (whether viewed
as translated-source or final-source). Each translated-source language should have its own stratum
section with a unique stratum name. The final-source stratum (named “Java”) is created automatically
and should not have a stratum section. The stratum section should be followed by a file section and a
line section which will be associated with that stratum.

5.1. General Format

8 Jakarta Debugging Support for Other Languages

http://www.unicode.org/unicode/standard/standard.html
http://ietf.org/rfc/rfc2279.txt

The format of the section is simply the stratum section marker *S followed by the name of the stratum.
The section ends with a line termination. One FileSection and one LineSection (in either order) must
follow the StratumSection (before the next StratumSection or the EndSection). One or more
VendorSections may follow a StratumSection. There must be at least one StratumSection.

5.4. FileSection
The file section describes the translated-source file names. Each line maps a file ID to a source name
and, optionally, to a source path. File IDs are used only in the LineSection. The source name is the
name of the translated-source. The source path is the path to the translated-source, the "/" symbol is
translated to the local file separator. In the case where the source repository is a file system, source
name is the file name (without directory information) and source path is a path name (often relative to
one of the compilation source paths). For example: Bar.foo would be a source name, and
here/there/Bar.foo would be a source path. The first file line denotes the primary file.

The format of the file section is the file section marker *F on a line by itself, followed by file
information. File information has two forms, source name only and source name / source path. The
source name only form is one line: the integer file ID followed by the source name. The source name /
source path form is two lines: a plus sign +, file ID, and source name on the first line and the source
path on the second. The file ID must be unique within the file section. A FileSection may only occur
after a StratumSection. The FileName must have at least one character. The AbsoluteFileName, if
specified, must have at least one character.

For example:

*F
+ 1 Foo.xyz
here/there/Foo.xyz
2 Incl.xyz

declares two source files. File ID #1 has source name Foo.xyz and source path here/there/Foo.xyz. File
ID #2 has source name Incl.xyz and a source path to be computed by the debugger.

5.5. LineSection
The line section associates line numbers in the output source with line numbers and source names in
the input source.

The format of the line section is the line section marker *L on a line by itself, followed by the lines of
LineInfo. Each LineInfo has the form:

InputStartLine # LineFileID , RepeatCount : OutputStartLine , OutputLineIncrement

5.4. FileSection

Jakarta Debugging Support for Other Languages 9

where all but

InputStartLine : OutputStartLine

are optional.

A range of output source lines is mapped to a single input source line. Each LineInfo describes
RepeatCount of these mappings. OutputLineIncrement specifies the number of lines in the output
source range; this line increment is applied to each mapping in the LineInfo. The source file containing
the input source line is specified by LineFileID via the FileSection.

More precisely, for each n between zero and

RepeatCount - 1

the input source line number

InputStartLine + n

maps to the output source line numbers from

OutputStartLine + (n * OutputLineIncrement)

through

OutputStartLine + ((n + 1) * OutputLineIncrement) - 1

If absent, RepeatCount and OutputLineIncrement default to one. If absent, LineFileID defaults to the
most recent value (initially zero).

The first line of a file is line one. RepeatCount is greater than or equal to one. Each LineFileID must be
a file ID present in the FileSection. InputStartLine is greater than or equal to one. OutputStartLine is
greater than or equal to one. OutputLineIncrement is greater than or equal to zero. A LineSection may
only occur after a StratumSection.

For example:

5.5. LineSection

10 Jakarta Debugging Support for Other Languages

*L
123:207
130,3:210
140:250,7
160,3:300,2

Creates this mapping:

Input Source Output Source

Line Begin Line End Line

123 207 207

130 210 210

131 211 211

132 212 212

140 250 256

160 300 301

161 302 303

162 304 305

Note that multiple LineInfo may map multiple input source lines to a single output source line, when
such a LineSection is being used to map output source lines to input source lines, a first matching
LineInfo rule applies.

Note also that multiple LineInfo may map a single input source line to a multiple, possibly disjoint,
output source lines, when such a LineSection is being used to map input source lines to output source
lines, a first matching LineInfo rule again applies.

5.6. VendorSection
The vendor section is for vendor specific information.

The format is *V on the first line to mark the section. The second line is the vendor ID which is formed
by the same rules by which unique package names are formed in the Java language specification, third
edition (§7.7) Unique Package Names.

5.7. EndSection
The end section marks the end of an SMAP, it consists simply of a *E marker. The end section must be
the last line of an SMAP.

5.6. VendorSection

Jakarta Debugging Support for Other Languages 11

https://docs.oracle.com/javase/specs/jls/se6/html/packages.html#7.7

5.8. Embedded Source Maps
The OpenEmbeddedSection marks the beginning and CloseEmbeddedSection the end of a set of
EmbeddedSourceMaps. These SMAPs correspond to the input source for a language-processor. The
stratum of the language-processor is indicated on both sections. These sections must not occur in a
resolved SMAP.

The format is the *O marker and the name of the output stratum on the first line. This is followed by
the set of embedded SMAPs. The embedded SMAPs are included "whole" - from the SMAP to the
EndSection *E marker - inclusive. Finally, the *C marker and the name of the output stratum on the last
line terminates the embedded SMAPs.

5.9. SMAP Syntax

SMAP:
 Header { Section } EndSection

Header:
 ID OutputFileName DefaultStratumId

ID:
 SMAP CR

OutputFileName:
 NONASTERISKSTRING CR

DefaultStratumId:
 NONASTERISKSTRING CR

Section:
 StratumSection
 FileSection
 LineSection
 EmbeddedSourceMaps
 VendorSection
 FutureSection

EmbeddedSourceMaps:
 OpenEmbeddedSection { SMAP } CloseEmbeddedSection

OpenEmbeddedSection:
 *O StratumID CR

CloseEmbeddedSection:
 *C StratumID CR

5.8. Embedded Source Maps

12 Jakarta Debugging Support for Other Languages

StratumSection:
 *S StratumID CR

StratumID:
 NONASTERISKSTRING

LineSection:
 *L CR { LineInfo }

LineInfo:
 InputLineInfo : OutputLineInfo CR

InputLineInfo:
 InputStartLine , RepeatCount
 InputStartLine

OutputLineInfo:
 OutputStartLine , OutputLineIncrement
 OutputStartLine

InputStartLine:
 NUMBER
 NUMBER # LineFileID

LineFileID:
 FileID

RepeatCount:
 NUMBER

OutputStartLine:
 NUMBER

OutputLineIncrement:
 NUMBER

FileSection:
 *F CR { FileInfo }

FileInfo:
 FileID FileName CR
 + FileID FileName CR AbsoluteFileName CR

FileID:
 NUMBER

FileName:
 NONASTERISKSTRING

5.9. SMAP Syntax

Jakarta Debugging Support for Other Languages 13

AbsoluteFileName:
 NONASTERISKSTRING

VendorSection:
 *V CR VENDORID CR { VendorInfo }

VendorInfo:
 NONASTERISKSTRING CR

FutureSection:
 * OTHERCHAR CR { FutureInfo }

FutureInfo:
 NONASTERISKSTRING CR

EndSection:
 *E CR

Where {x} denotes zero or more occurrences of x. And where the terminals are defined as follows
(whitespace is a sequence of zero or more spaces or tabs):

Terminals

NONASTERISKSTRING Any sequence of characters (excluding the terminal carriage-return or new-
line) which does not start with "*". Leading whitespace is ignored.

NUMBER Non negative decimal integer. The number is terminated by the first non-
digit character. Leading and trailing whitespace is ignored.

CR a line terminator: carriage-return, carriage-return followed by new-line or
new-line.

OTHERCHAR Any character (other than carriage-return, new-line, space or tab) not
already used as a section header (not S,F,L,V,O,C or E).

VENDORID A sequence of characters that identifies a vendor. The name is formed by
the same rules that unique package names are formed in the Java language
specification. Leading and trailing whitespace is ignored. The terminal
carriage-return or new-line is excluded.

5.9. SMAP Syntax

14 Jakarta Debugging Support for Other Languages

Chapter 6. SMAP Resolution
Before the SMAP in a SMAP-file can be installed into the SourceDebugExtension attribute it must be
resolved into an SMAP with no embedded SMAPs and with final-source as the output source. A set of
embedded SMAPs is specific to a stratum and is resolved in the context of the matching StratumSection
in the outer SMAP. The resolved SMAP includes StratumSections computed from each set of embedded
SMAPs as well as the unchanged StratumSections of the outer SMAP. If embedded SMAPs are nested,
the inner-most is resolved first.

The structure of an SMAP with embedded SMAPs is as follows:

SMAP
...
*O B
SMAP
...
*S A
...
*E
*C B
...
*S B
...
*E

The structure is a set of embedded SMAPs (for a stratum, here named B), an outer StratumSection (for
B), and an embedded SMAP with a StratumSection (for a stratum, here named A). Note that: there may
be many sets of embedded SMAPs, many embedded SMAPs within the set of embedded SMAPs, and
many StratumSections within an SMAP. A StratumSection maps source information from its stratum to
an output stratum. Thus, the embedded StratumSection maps stratum A to stratum B. We know it is
mapped to stratum B because the set of embedded SMAPs for stratum B corresponds to the input for
the language-processor for B. The outer StratumSection maps stratum B to its output stratum (let’s call
this stratum C), if the shown SMAP is the outer-most SMAP then stratum C is the final-source stratum.
The purpose of resolution is to create a non-embedded StratumSection for A which maps to C (all
StratumSections within an SMAP must map to the same output stratum, in a resolved outer-most SMAP
all StratumSections will map to the final-source stratum). This is done by composing the mapping in
the embedded StratumSection (from A to B) with the mapping in the outer StratumSection (from B to
C). Since there may be many embedded StratumSections for A, these sections must be merged.

A StratumSection is computed for each stratum present in the embedded SMAPs. The computed
StratumSection is the merge of each embedded StratumSection, for that stratum. Line number
information is composed with the line number information of the outer StratumSection (note that the
embedded StratumSections cannot be for the same stratum as the outer StratumSection). Specifically, a
computed StratumSection consists of a merged FileSection, a composed LineSection, and direct copies

Chapter 6. SMAP Resolution

Jakarta Debugging Support for Other Languages 15

of any VendorSections or unknown sections. The merged FileSection includes each unique FileInfo,
with FileIDs reassigned to be unique. The composition the LineSections is described in the algorithm
below.

6.1. LineInfo Composition Algorithm
The following pseudo-code sketches the algorithm for resolving LineInfo in embedded SMAPs. LineInfo
resolution is by composition - discussed above. An embedded LineInfo which maps stratum A to
stratum B is composed with an outer LineInfo which maps stratum B to stratum C to create a new
resolved LineInfo which maps stratum A to stratum C.

The SMAPs and their components are marked by subscript:

• Embedded SMAP - levelE

• Outer StratumSection - levelO

• Resolved computed StratumSection - levelR

The inputs and outputs of the algorithm are LineInfo tuples. Line information is represented in this
algorithm in its LineInfo format which is discussed in the LineSection. This algorithm is invoked for
each LineInfoE in each embedded SMAP.

6.1. LineInfo Composition Algorithm

16 Jakarta Debugging Support for Other Languages

ResolveLineInfo:
 InputStartLineE #LineFileIDE, RepeatCountE : OutputStartLineE, OutputLineIncrementE

as follows:

if RepeatCountE > 0 then {
 for each LineInfoO in the stratum of the embedded SMAP:
 InputStartLineO #LineFileIDO, RepeatCountO: OutputStartLineO, OutputLineIncrementO

 which includes OutputStartLineE

 that is, InputStartLineO + N == OutputStartLineE

 for some offset into the outer input range N where 0 ⇐ N < RepeatCountO

 and for which LineFileIDO has a sourceName matching the embedded SMAP’s OutputFileName {
 compute the number of outer mapping repeations which can be applied
 available := RepeatCountO - N ;
 compute the number of embedded mapping repeations which can be applied
 completeCount := floor(available / OutputLineIncrementE) min RepeatCountE ;
 if completeCount > 0 then {
 output resolved LineInfo
 InputStartLineE # uniquify(LineFileIDE), completeCount :
 (OutputStartLineO + (N * OutputLineIncrementO)),
 (OutputLineIncrementE * OutputLineIncrementO) ;
 ResolveLineInfo
 (InputStartLineE + completeCount) #LineFileIDE, (RepeatCountE - completeCount) :
 (OutputStartLineE + completeCount * OutputLineIncrementE), OutputLineIncrementE ;
 } else {
 output resolved LineInfo
 InputStartLineE # uniquify(LineFileIDE), 1 :
 (OutputStartLineO + (N * OutputLineIncrementO)), available ;
 ResolveLineInfo
 InputStartLineE #LineFileIDE, 1 :
 (OutputStartLineE + available), (OutputLineIncrementE - available) ;
 ResolveLineInfo
 (InputStartLineE + 1) #LineFileIDE, (RepeatCountE - 1):
 (OutputStartLineE + OutputLineIncrementE), OutputLineIncrementE ;
 }
 }
}

where uniquify converts a LineFileIDE to a corresponding LineFileIDR

6.2. Resolution Example
The following example demonstrates resolution with this algorithm. The general example will provide
context before walking through this example. In this example, Incl.bar is included by Hi.bar, but each
is the result of a prior translation.

6.2. Resolution Example

Jakarta Debugging Support for Other Languages 17

If the unresolved SMAP (in Hi.java.smap) is as follows:

SMAP
Hi.java
Java

Outer Header

*O Bar OpenEmbeddedSection

SMAP
Hi.bar
Java
*S Foo
*F
1 Hi.foo
*L
1#1,5:1,2
*E

Embedded SMAP (Hi.bar)

SMAP
Incl.bar
Java
*S Foo
*F
1 Incl.foo
*L 1#1,2:1,2
*E

Embedded SMAP (Incl.bar)

*C Bar CloseEmbeddedSection

*S Bar
*F
1 Hi.bar
2 Incl.bar
*L
1#1:1
1#2,4:2
3#1,8:6

Outer StratumSection

6.2. Resolution Example

18 Jakarta Debugging Support for Other Languages

*E Final EndSection

The merged levelR FileSection is (in stratum Foo):

*F
1 Hi.foo
2 Incl.foo

The computation proceeds as follows:

LineInfoE LineInfoE

recursion 1
LineInfoE

recursion 2
matching
outer
LineInfoO

resolved
LineInfoR

discussion

1#1,5:1,2 1#1:1 1#1,1:1,1 ResolveLineInfo is called for 1#1,5:1,2
(from the first embedded SMAP -
OutputFileName is Hi.bar). 1#1:1 is found
as the outer StratumSection LineInfoO

with InputStartLineO of 1 and
LineFileIDO has a sourceName matching
Hi.bar. N is 0, and completeCount is 0, thus
the else branch is taken. available is 1
and thus output is 1#1,1:1,1.

1#1,1:2,1 no match The remaining half of the initial
LineInfoE mapping then must be
resolved recursively, but there is no
match and it is ignored.

2#1,4:3,2 3#1,8:6 2#1,4:6,2 The remaining mappings are also
handled recursively. There is a matching
LineInfoO. N is 0, and completeCount is 4,
thus the if branch is taken.

6#1,0:11,2 n/a The recursive resolve descends deeper
but does nothing since all of
RepeatCountE has been mapped. The first
LineInfoE is now resolved. Since it had
only one LineInfoE the first SMAP is also
resolved.

6.2. Resolution Example

Jakarta Debugging Support for Other Languages 19

LineInfoE LineInfoE

recursion 1
LineInfoE

recursion 2
matching
outer
LineInfoO

resolved
LineInfoR

discussion

1#1,2:1,2 1#2,4:2 1#2,2:2,2 Now for the second SMAP
(OutputFileName is Incl.bar). FileIDE 1 in
this SMAP is Incl.foo which corresponds
to the remapped FileIDR 2. So the
matching LineInfoO is 1#2,4:2. N is 0, and
completeCount is 2, so the if branch is
taken.

3#1,0:5,2 n/a The recursive resolve does nothing since
all the maps have been handled.
Resolution is complete.

The resultant resolved SMAP is:

SMAP
Hi.java
Java
*S Foo
*F
1 Hi.foo
2 Incl.foo
*L
1#1,1:1,1
2#1,4:6,2
1#2,2:2,2
*S Bar
*F
1 Hi.bar
2 Incl.bar
*L
1#1:1
1#2,4:2
3#1,8:6
*E

6.2. Resolution Example

20 Jakarta Debugging Support for Other Languages

Chapter 7. JPDA Support
The Java Platform Debugger Architecture in the Java 1.4 release was extended in support of debugging
other languages. The new APIs and APIs with comments changed to include reference to strata are
listed below:

New APIs APIs with Changed Comments

JVMDI

GetSourceDebugExtension

JDWP - ReferenceType (2) Command Set

SourceDebugExtension Command (12)

JDWP - VirtualMachine (1) Command Set

SetDefaultStratum Command (19)

JDI - VirtualMachine interface

void setDefaultStratum(String stratum)

String getDefaultStratum()

JDI - ReferenceType interface

String sourceNames(String stratum) String sourceName()

String sourcePaths(String stratum)

List allLineLocations(String stratum, String sourceName) List allLineLocations()

List locationsOfLine(String stratum, String sourceName,
int lineNumber)

List locationsOfLine(int lineNumber)

List availableStrata()

String defaultStratum()

String sourceDebugExtension()

JDI - Method interface

List allLineLocations(String stratum, String sourceName) List allLineLocations()

List locationsOfLine(String stratum, String sourceName,
int lineNumber)

List locationsOfLine(int lineNumber)

JDI - Location interface

class comment (strata defined)

int lineNumber(String stratum) int lineNumber()

String sourceName(String stratum) String sourceName()

String sourcePath(String stratum)

String sourcePath()

Chapter 7. JPDA Support

Jakarta Debugging Support for Other Languages 21

https://docs.oracle.com/javase/1.5.0/docs/guide/jpda/
https://docs.oracle.com/javase/1.5.0/docs/guide/jpda/jvmdi-spec.html
https://docs.oracle.com/javase/1.5.0/docs/guide/jpda/jvmdi-spec.html#GetSourceDebugExtension
https://docs.oracle.com/javase/1.5.0/docs/guide/jpda/jdwp-spec.html
https://docs.oracle.com/javase/1.5.0/docs/guide/jpda/jdwp/jdwp-protocol.html#JDWP_ReferenceType_SourceDebugExtension
https://docs.oracle.com/javase/1.5.0/docs/guide/jpda/jdwp-spec.html
https://docs.oracle.com/javase/1.5.0/docs/guide/jpda/jdwp/jdwp-protocol.html#JDWP_VirtualMachine_SetDefaultStratum
https://docs.oracle.com/javase/1.5.0/docs/guide/jpda/jdi/index.html
https://docs.oracle.com/javase/1.5.0/docs/guide/jpda/jdi/com/sun/jdi/VirtualMachine.html
https://docs.oracle.com/javase/1.5.0/docs/guide/jpda/jdi/com/sun/jdi/VirtualMachine.html#setDefaultStratum(java.lang.String)
https://docs.oracle.com/javase/1.5.0/docs/guide/jpda/jdi/com/sun/jdi/VirtualMachine.html#getDefaultStratum()
https://docs.oracle.com/javase/1.5.0/docs/guide/jpda/jdi/index.html
https://docs.oracle.com/javase/1.5.0/docs/guide/jpda/jdi/com/sun/jdi/ReferenceType.html
https://docs.oracle.com/javase/1.5.0/docs/guide/jpda/jdi/com/sun/jdi/ReferenceType.html#sourceNames(java.lang.String)
https://docs.oracle.com/javase/1.5.0/docs/guide/jpda/jdi/com/sun/jdi/ReferenceType.html#sourceName()
https://docs.oracle.com/javase/1.5.0/docs/guide/jpda/jdi/com/sun/jdi/ReferenceType.html#sourcePaths(java.lang.String)
https://docs.oracle.com/javase/1.5.0/docs/guide/jpda/jdi/com/sun/jdi/ReferenceType.html#allLineLocations(java.lang.String,%20java.lang.String)
https://docs.oracle.com/javase/1.5.0/docs/guide/jpda/jdi/com/sun/jdi/ReferenceType.html#allLineLocations()
https://docs.oracle.com/javase/1.5.0/docs/guide/jpda/jdi/com/sun/jdi/ReferenceType.html#locationsOfLine(java.lang.String,%20java.lang.String,%20int)
https://docs.oracle.com/javase/1.5.0/docs/guide/jpda/jdi/com/sun/jdi/ReferenceType.html#locationsOfLine(java.lang.String,%20java.lang.String,%20int)
https://docs.oracle.com/javase/1.5.0/docs/guide/jpda/jdi/com/sun/jdi/ReferenceType.html#locationsOfLine(int)
https://docs.oracle.com/javase/1.5.0/docs/guide/jpda/jdi/com/sun/jdi/ReferenceType.html#availableStrata()
https://docs.oracle.com/javase/1.5.0/docs/guide/jpda/jdi/com/sun/jdi/ReferenceType.html#defaultStratum()
https://docs.oracle.com/javase/1.5.0/docs/guide/jpda/jdi/com/sun/jdi/ReferenceType.html#sourceDebugExtension()
https://docs.oracle.com/javase/1.5.0/docs/guide/jpda/jdi/index.html
https://docs.oracle.com/javase/1.5.0/docs/guide/jpda/jdi/com/sun/jdi/Method.html
https://docs.oracle.com/javase/1.5.0/docs/guide/jpda/jdi/com/sun/jdi/Method.html#allLineLocations(java.lang.String,%20java.lang.String)
https://docs.oracle.com/javase/1.5.0/docs/guide/jpda/jdi/com/sun/jdi/Method.html#allLineLocations()
https://docs.oracle.com/javase/1.5.0/docs/guide/jpda/jdi/com/sun/jdi/Method.html#locationsOfLine(java.lang.String,%20java.lang.String,%20int)
https://docs.oracle.com/javase/1.5.0/docs/guide/jpda/jdi/com/sun/jdi/Method.html#locationsOfLine(java.lang.String,%20java.lang.String,%20int)
https://docs.oracle.com/javase/1.5.0/docs/guide/jpda/jdi/com/sun/jdi/Method.html#locationsOfLine(int)
https://docs.oracle.com/javase/1.5.0/docs/guide/jpda/jdi/index.html
https://docs.oracle.com/javase/1.5.0/docs/guide/jpda/jdi/com/sun/jdi/Location.html
https://docs.oracle.com/javase/1.5.0/docs/guide/jpda/jdi/com/sun/jdi/Location.html
https://docs.oracle.com/javase/1.5.0/docs/guide/jpda/jdi/com/sun/jdi/Location.html#lineNumber(java.lang.String)
https://docs.oracle.com/javase/1.5.0/docs/guide/jpda/jdi/com/sun/jdi/Location.html#lineNumber()
https://docs.oracle.com/javase/1.5.0/docs/guide/jpda/jdi/com/sun/jdi/Location.html#sourceName(java.lang.String)
https://docs.oracle.com/javase/1.5.0/docs/guide/jpda/jdi/com/sun/jdi/Location.html#sourceName()
https://docs.oracle.com/javase/1.5.0/docs/guide/jpda/jdi/com/sun/jdi/Location.html#sourcePath(java.lang.String)
https://docs.oracle.com/javase/1.5.0/docs/guide/jpda/jdi/com/sun/jdi/Location.html#sourcePath()

Chapter 8. SourceDebugExtension Support
Debugger applications frequently need debugging information about the source that exceeds what is
delivered by the existing JavaTM Virtual Machine class file attributes (SourceFile, LineNumber, and
LocalVariable). This is particularly true for debugging the source of other languages. In a distributed
environment side files may not be accessible, the information must be directly associated with the
class.

The solution is the addition of a class file attribute which holds a string. The string contains debugging
information in a standardized format which allows for evolution and vendor extension.

8.1. SourceDebugExtension Access
This string is made opaquely accessible at the three layers of the Java Platform Debugger Architecture
(JPDA):

JVMDI GetSourceDebugExtension(jclass clazz, char **sourceDebugExtensionPtr)

JDWP SourceDebugExtension Command (12) in the ReferenceType (2) Command Set

JDI String sourceDebugExtension() in the ReferenceType interface

8.2. SourceDebugExtension Class File Attribute
Java virtual machine class file attributes are described in section 4.7 of the The Java Virtual Machine
Specification. The definition of the added attribute is in the context of The Java Virtual Machine
Specification:

8.1. SourceDebugExtension Access

22 Jakarta Debugging Support for Other Languages

https://docs.oracle.com/javase/1.5.0/docs/guide/jpda/
https://docs.oracle.com/javase/1.5.0/docs/guide/jpda/jvmdi-spec.html#GetSourceDebugExtension
https://docs.oracle.com/javase/1.5.0/docs/guide/jpda/jdwp/jdwp-protocol.html#JDWP_ReferenceType_SourceDebugExtension
https://docs.oracle.com/javase/1.5.0/docs/guide/jpda/jdi/com/sun/jdi/ReferenceType.html#sourceDebugExtension()
https://docs.oracle.com/javase/specs/jvms/se6/html/ClassFile.doc.html#43817
https://docs.oracle.com/javase/specs/jvms/se6/html/VMSpecTOC.doc.html
https://docs.oracle.com/javase/specs/jvms/se6/html/VMSpecTOC.doc.html

The SourceDebugExtension attribute is an optional attribute in the attributes table of the ClassFile
structure. There can be no more than one SourceDebugExtension attribute in the attributes table of a
given ClassFile structure.

The SourceDebugExtension attribute has the following format:

 SourceDebugExtension_attribute {
 u2 attribute_name_index;
 u4 attribute_length;
 u1 debug_extension[attribute_length];
 }

The items of the SourceDebugExtension_attribute structure are as follows:

attribute_name_index

The value of the attribute_name_index item must be a valid index into the constant_pool table. The
constant_pool entry at that index must be a CONSTANT_Utf8_info structure representing the string
"SourceDebugExtension".

attribute_length

The value of the attribute_length item indicates the length of the attribute, excluding the initial six
bytes. The value of the attribute_length item is thus the number of bytes in the debug_extension[]
item.

debug_extension[]

The debug_extension array holds a string, which must be in UTF-8 format. There is no terminating
zero byte.
The string in the debug_extension item will be interpreted as extended debugging information. The
content of this string has no semantic effect on the Java Virtual Machine.

8.2. SourceDebugExtension Class File Attribute

Jakarta Debugging Support for Other Languages 23

Chapter 9. Example
The example below shows how the process described above would apply to a tiny JSP program.

9.1. Input Source
The input consists of two JSP files, the first is Hello.jsp:

 1 <HTML>

 2 <HEAD>

 3 <TITLE>Hello Example</TITLE>

 4 </HEAD>

 5 <BODY>

 6 <%@ include file="greeting.jsp" %>

 7 </BODY>

 8 </HTML>

The second JSP file is the included file greeting.jsp:

 1 Hello There!<P>

 2 Goodbye on <%= new Date() %>

9.2. Language Processor
When a JSP compiler (the language-processor) compiles these files it will produce two outputs - a Java
programming language source file and a SMAP-file. The generated Java programming language source
file is HelloServlet.java:

1 import jakarta.servlet.*;

2 import jakarta.servlet.http.*;

3

4 public class HelloServlet extends HttpServlet {

5 public void doGet(HttpServletRequest request,

6 HttpServletResponse response)

7 throws ServletException, IOException {

8 response.setContentType("text/html");

9 PrintWriter out = response.getWriter();

9.1. Input Source

24 Jakarta Debugging Support for Other Languages

10 // Hello.jsp:1

11 out.println("<HTML>");

12 // Hello.jsp:2

13 out.println("<HEAD>");

14 // Hello.jsp:3

15 out.println("<TITLE>Hello Example</TITLE>");

16 // Hello.jsp:4

17 out.println("</HEAD>");

18 // Hello.jsp:5

19 out.println("<BODY>");

20 // greeting.jsp:1

21 out.println("Hello There!<P>");

22 // greeting.jsp:2

23 out.println("Goodbye on " + new Date());

24 // Hello.jsp:7

25 out.println("</BODY>");

26 // Hello.jsp:8

27 out.println("</HTML>");

28 }

29 }

The generated SMAP-file is HelloServlet.java.smap:

SMAP
HelloServlet.java
JSP
*S JSP
*F
1 Hello.jsp
2 greeting.jsp
*L
1#1,5:10,2
1#2,2:20,2
7#1,2:24,2
*E

A couple things are interesting to note about this SMAP — the user has chosen to make JSP the default

9.2. Language Processor

Jakarta Debugging Support for Other Languages 25

stratum (perhaps by a command line option) and even though there are ten lines of input source and
29 lines of generated source, only three LineInfo lines describe the transformation: the first and last
are for the lines before and after the include (respectively) and the middle is for the included file
greeting.jsp.

The three LineInfo lines describe these mappings:

1#1,5:10,2
 Hello.jsp: line 1 -> HelloServlet.java: lines 10, 11
 line 2 -> lines 12, 13
 line 3 -> lines 14, 15
 line 4 -> lines 16, 17
 line 5 -> lines 18, 19

1#2,2:20,2
 greeting.jsp: line 1 -> HelloServlet.java: lines 20, 21
 line 2 -> lines 22, 23

7#1,2:24,2
 Hello.jsp: line 7 -> HelloServlet.java: lines 24, 25
 line 8 -> lines 26, 27

9.3. Post Processor
Next HelloServlet.java is compiled by a Java programming language compiler (for example javac)
producing the class file HelloServlet.class. Then the post-processor is run. It takes HelloServlet.class
and HelloServlet.java.smap as input. It creates a SourceDebugExtension attribute whose content is the
SMAP in HelloServlet.java.smap and rewrites HelloServlet.class with this attribute.

9.4. Debugging
Now the program is run under the control of a debugger (which is a client of JDI). Let’s say we are
stepping through this code and the debugger has just received a JDI StepEvent for the line that is just
about to output <BODY>. The debugger’s code might look like this (the StepEvent is in the variable
stepEvent):

Location location = stepEvent.location();
String sourceName = location.sourceName("Java");
int lineNumber = location.lineNumber("Java");
displaySource(sourceName, lineNumber);

where displaySource is a debugger routine that displays a source location. Because the Java stratum
has been specified sourceName would be HelloServlet.java, the lineNumber would be 19 and the

9.3. Post Processor

26 Jakarta Debugging Support for Other Languages

displayed line would be:

out.println("<BODY>");

However, if sourceName and lineNumber were derived as follows:

String sourceName = location.sourceName("JSP");
int lineNumber = location.lineNumber("JSP");

Since the JSP stratum has been specified, sourceName would be Hello.jsp, the lineNumber would be 5 and
the displayed line would be:

<BODY>

This occurs because the SourceDebugExtension attribute was stored when the VM read
HelloServlet.class and it was retrieved with the SourceDebugExtension JDWP command which in turn
caused the JVMDI function call GetSourceDebugExtension. The SMAP in the SourceDebugExtension
was parsed which provided the above transformation of source location. Specifically, the line:

1#1,5:10,2

is the basis of this transformation - which refers to FileId #1

1 Hello.jsp

and whence the sourceName information. Since the default stratum specified in the SMAP is JSP, the
code:

String sourceName = location.sourceName();
int lineNumber = location.lineNumber();

would have the same effect. Since this is the form code would have taken before these extensions were
introduced, existing debuggers can be utilized if they are run under the new implementation of JDI.

9.4. Debugging

Jakarta Debugging Support for Other Languages 27

	Jakarta Debugging Support for Other Languages
	Table of Contents
	Eclipse Foundation Specification License
	Disclaimers

	Chapter 1. Goal
	Chapter 2. Terminology
	Chapter 3. Approach
	3.1. Single Translation
	3.2. Multiple Translations
	3.3. Diagram

	Chapter 4. Scope
	4.1. Variables
	4.2. Multi-Level Source View
	4.3. Finding Source Files
	4.4. Multiple Source Files per Class File

	Chapter 5. Source Map Format
	5.1. General Format
	5.2. Header
	5.3. StratumSection
	5.4. FileSection
	5.5. LineSection
	5.6. VendorSection
	5.7. EndSection
	5.8. Embedded Source Maps
	5.9. SMAP Syntax

	Chapter 6. SMAP Resolution
	6.1. LineInfo Composition Algorithm
	6.2. Resolution Example

	Chapter 7. JPDA Support
	Chapter 8. SourceDebugExtension Support
	8.1. SourceDebugExtension Access
	8.2. SourceDebugExtension Class File Attribute

	Chapter 9. Example
	9.1. Input Source
	9.2. Language Processor
	9.3. Post Processor
	9.4. Debugging

