\
JAKARTA EE

Jakarta Authorization

Jakarta Authorization Team, https://projects.eclipse.org/projects/ee4j.jacc

2.0, July 28, 2020: Final

Table of Contents

Copyright
Eclipse Foundation Specification License
Disclaimers
.1. Preface
.2. Status of Document
.3. Audience
4. Abstract
.5. Keywords
.6. Acknowledgements
1. Overview
1.1. Introduction
1.2. Terminology
1.3. Assumptions
1.4. Requirements
1.5. Non Requirements
1.6. Running Without a SecurityManager
1.7. Servlet or EJB only containers
1.8. Servlet Only Containers
1.9. E]B Only Containers
2. Provider Configuration Subcontract
2.1. Policy Implementation Class
2.2. Permission Implementation Classes
2.3. Policy Configuration Interface
2.4. PolicyContext Class and Context Handlers
2.5. What a Provider Must Do
2.6. Optional Provider Support for JAAS Policy Object
2.7. What the Application Server Must Do
2.8. Modifications to the JAAS SubjectDomainCombiner
3. Policy Configuration Subcontract
3.1. What a Jakarta EE Platform’s Deployment Tools Must Do
3.1.1. Policy Contexts and Policy Context Identifiers
3.1.1.1. Policy Context Life Cycle
3.1.1.2. Linking Policy Contexts
3.1.2. Servlet Policy Context Identifiers
3.1.3. Translating Servlet Deployment Descriptors
3.1.3.1. Programmatic Servlet Registrations

© N9 9 kW W W W N NN

NN NN NN R R R R) | | | | s | s s s s
W W NN R O O © J 0 o Ul U b b b b DN DN DN R O

3.1.3.2. Translating security-constraint Elements
3.1.3.3. Translating Servlet security-role-ref Elements
3.1.3.4. Servlet URL-Pattern Matching Rules
3.1.3.5. Example

3.1.4. Jakarta Enterprise Beans Policy Context Identifiers

3.1.5. Translating Jakarta Enterprise Beans Deployment Descriptors

3.1.5.1. Translating Jakarta Enterprise Beans method-permission Elements

3.1.5.2. Translating the Jakarta Enterprise Beans exclude-list

3.1.5.3. Translating Jakarta Enterprise Beans security-role-ref Elements

3.1.6. Deploying an Application or Module
3.1.7. Undeploying an Application or Module
3.1.8. Deploying to an existing Policy Configuration
3.1.9. Redeploying a Module
3.2. What the Provider Must Do

3.3. Permission to Configure Policy

4. Policy Decision and Enforcement Subcontract

4.1. Policy Enforcement by Servlet Containers
4.1.1. Permission Names for Transport and Pre-Dispatch Decisions
4.1.2. Evaluation of Transport Guarantees
4.1.3. Pre-dispatch Decision
4.1.4. Application Embedded Privilege Test
4.2. Provider Support for Servlet Policy Enforcement
4.2.1. Servlet Policy Decision Semantics
4.2.1.1. Matching Qualified URL Pattern Names
4.2.1.2. Matching HTTP Method Specifications
4.2.1.3. WebResourcePermission Matching Rules
4.2.1.4. WebRoleRefPermission Matching Rules
4.2.1.5. WebUserDataPermission Matching Rules
4.3. Policy Enforcement by Jakarta Enterprise Beans Containers
4.3.1. Jakarta Enterprise Beans Pre-dispatch Decision
4.3.2. Jakarta Enterprise Beans Application Embedded Privilege Test
4.4. Provider Support for Jakarta Enterprise Beans Policy Enforcement
4.4.1. Jakarta Enterprise Beans Policy Decision Semantics
4.4.1.1. EJBMethodPermission Matching Rules
4.4.1.2. EJBRoleRefPermission Matching Rules
4.5. Component runAs Identity
4.6. Setting the Policy Context
4.6.1. Policy Context Handlers

23
28
28
29
32
32
33
33
33
34
34
35
35
36
36
38
38
38
38
39
39
39
39
40
40
41
41
41
42
42
42
43
43
43
44
44
435
435

4.6.1.1. Container Subject Policy Context Handler
4.6.1.2. SOAPMessage Policy Context Handler
4.6.1.3. HttpServletRequest Policy Context Handler
4.6.1.4. EnterpriseBean Policy Context Handler

4.6.1.5. Jakarta Enterprise Beans Arguments Policy Context Handler

4.7. Checking AccessControlContext Independent Grants

4.8. Checking the Caller for a Permission

4.9. Missing Policy Contexts

4.10
411
4.12
Appen
Appen
B.1.
B.2.
B.3.
B.4.
B.5.
B.6.
B.7.
B.8.
B.9.
B.10
B.11
B.12
B.13

. Default Policy Context

. Policy Compatibility Requirements

. Optimization of Permission Evaluations

dix A: Related Documents

dix B: Issues

Configuration Context and Policy Context Identifiers
Configuration of Permissions with Parameters

Extensibility of the PolicyConfiguration Interface

Directory Scoped Extension matching patterns

Evolution of Deployment Policy Language

Principals Passed to Providers in Subjects

Clarification of Jakarta Servlet Constraint Matching Semantics
References and Arguments in EJBMethodPermisison
Permission Spanning in RoleRefPermission

. PolicyContext Identifiers are Unknown to Components

. JAAS Policy Interface expects Providers to be able to getPermissions
. Implementing Web Security Constraints as Permission

. Exception Handling

B.14. PolicyConfiguration Commit

B.15
B.16
B.17
B.18
B.19
B.20
B.21
Appen

C.1.

C.2.
C.

. Support for ServiceEndpoint methodInterface

. TypeNames of E]JBMethodPermission Array Parameters
. Checking Permission on the root of a Web Application

. Calling isUserInRole from JSP not mapped to a Servlet

. Support for HTTP Extension Methods

. Welcome File and security-constraint Processing

. Colons Within path-segment of Request URI

dix C: Revision History

Community Draft Version 0.3 (dated 12/13/2001)
Changes in Public Draft Version 0.1

2.1. General

46
46
46
46
47
47
48
48
49
49
49
51
52
52
52
53
53
53
54
54
54
55
55
56
56
56
57
57
58
58
58
59
59
60
61
61
61
61

C.2.2. Changes to Provider Configuration Subcontract
C.2.3. Changes to Policy Configuration Subcontract
C.2.4. Changes to Policy Decision Subcontract

C.2.5. Changes to API

C.2.6. Changes to Issues

C.3. Changes in Public Draft Version 0.2

C.3.1. General
C.3.2. Changes to Provider Configuration Subcontract
C.3.3. Changes to Policy Decision Subcontract

C.3.4. Changes to Issues

C.4. Changes in Proposed Final Draft 1 Expert Draft 0.1

C.4.1. General

C.4.2. Changes to the Preface and Overview

C.4.3. Changes to Provider Configuration Subcontract
C.4.4. Changes to Policy Configuration Subcontract
C.4.5. Changes to Policy Decision Subcontract

C.4.6. Changes to API

C.4.7. Changes to Issues

C.5. Changes in Proposed Final Draft 1 Expert Draft 0.2

C.5.1. Changes to the Preface and Overview
C.5.2. Changes to Policy Configuration Subcontract
C.5.3. Changes to Policy Decision Subcontract

C.5.4. Changes to History

C.6. Changes in Proposed Final Draft 1 Expert Draft 0.3

C.6.1. Changes to the Preface and Overview

C.6.2. Changes to Policy Configuration Subcontract
C.6.3. Changes to Policy Decision Subcontract
C.6.4. Changes to API

C.7. Changes in Proposed Final Draft 2 Expert Draft 1

C.7.1. General

C.7.2. Changes to Preface

C.7.3. Changes to Overview

C.7.4. Changes to Provider Configuration Subcontract

C.7.5. Changes to Policy Configuration Subcontract

C.7.6. Changes to Policy Decision and Enforcement Subcontract
C.7.7. Changes to API

C.7.8. Changes to References

C.7.9. Changes to Issues

61
61
61
62
62
62
62
62
63
63
63
63
63
63
64
64
65
66
66
66
67
67
67
67
67
67
67
68
68
68
68
68
68
68
69
70
72
72

C.8. Changes in Proposed Final Draft 2 Expert Draft 2
C.8.1. Changes to Preface
C.8.2. Changes to Policy Configuration Subcontract
C.8.3. Changes to Policy Decision and Enforcement Subcontract
C.8.4. Changes to API
C.9. Changes in Proposed Final Draft 2 Expert Draft 3
C.9.1. Changes to Policy Configuration Subcontract
C.9.2. Changes to Policy Decision and Enforcement Subcontract
C.9.3. Changes to API
C.10. Changes in Proposed Final Draft 2 Expert Draft 4
C.10.1. Changes to API
C.11. Changes in Final Release
C.11.1. Changes to License
C.11.2. Changes to the Preface
C.11.3. Changes to Overview
C.11.4. Changes to Provider Configuration Subcontract
C.11.5. Changes to Policy Configuration Subcontract
C.11.6. Changes to Policy Decision and Enforcement Contract
C.11.7. Changes to API
C.11.8. Changes to Appendix A: Related Documents
C.11.9. Changes to Appendix B: Issues
C.12. Changes in Errata A
C.12.1. Changes to Policy Configuration Subcontract
C.12.2. Changes to Policy Enforcement Subcontract
C.12.3. Changes to API
C.12.4. Changes to Appendix B: Issues
C.13. Changes in Errata B
C.13.1. Changes to Overview
C.14. Change log for Errata C
C.14.1. Changes Made Throughout the Document
C.14.2. Changes to Overview
C.14.3. Changes to Provider Configuration Contract
C.14.4. Changes to Policy Configuration Contract
C.14.5. Changes to Policy Decision and Enforcement Contract
C.14.6. Changes to API
C.15. Change log for Errata D
C.15.1. Changes Made Throughout the Document
C.15.2. Changes to Policy Configuration Contract

72
72
72
72
73
73
73
74
74
74
74
74
74
75
75
75
75
76
76
77
77
77
77
77
77
77
78
78
78
78
78
78
78
79
79
79
79
79

C.15.3. Changes to Policy Decision and Enforcement Contract
C.15.4. Changes to API
C.15.5. Changes to Appendix B: Issues
C.16. Change log for Errata E
C.16.1. Changes Made Throughout the Document
C.16.2. Changes to Overview
C.16.3. Changes to Policy Configuration Contract
C.16.4. Changes to Policy Decision and Enforcement Contract
C.16.5. Changes to API
C.16.6. Changes to Issues
C.17. Change log for Errata F
C.17.1. Changes Made Throughout the Document
C.17.2. Changes to Policy Configuration Subcontract
C.18. Change log for Errata G (maintenance Release 7)
C.18.1. Changes Made Throughout the Document
C.18.2. Changes to Policy Configuration Subcontract
C.18.3. Changes to API
C.19. Change log for Errata H (maintenance Release 8)
C.19.1. Changes Made Throughout the Document
C.19.2. Changes to Policy Configuration Subcontract

80
80
80
80
80
80
81
81
82
82
82
82
82
83
83
83
83
84
84
84

Preface

Specification: Jakarta Authorization
Version: 2.0
Status: Final

Release: July 28, 2020

Final Jakarta Authorization 1

Eclipse Foundation Specification License

Copyright

Copyright © 2018, 2020 Eclipse Foundation. https://www.eclipse.org/legal/efsl.php

Eclipse Foundation Specification License

By using and/or copying this document, or the Eclipse Foundation document from which this statement
is linked, you (the licensee) agree that you have read, understood, and will comply with the following
terms and conditions:

Permission to copy, and distribute the contents of this document, or the Eclipse Foundation document
from which this statement is linked, in any medium for any purpose and without fee or royalty is
hereby granted, provided that you include the following on ALL copies of the document, or portions
thereof, that you use:

¢ link or URL to the original Eclipse Foundation document.

 All existing copyright notices, or if one does not exist, a notice (hypertext is preferred, but a textual
representation is permitted) of the form: "Copyright © [$date-of-document] Eclipse Foundation, Inc.
https://www.eclipse.org/legal/efsl.php"

Inclusion of the full text of this NOTICE must be provided. We request that authorship attribution be
provided in any software, documents, or other items or products that you create pursuant to the
implementation of the contents of this document, or any portion thereof.

No right to create modifications or derivatives of Eclipse Foundation documents is granted pursuant to
this license, except anyone may prepare and distribute derivative works and portions of this document
in software that implements the specification, in supporting materials accompanying such software,
and in documentation of such software, PROVIDED that all such works include the notice below.
HOWEVER, the publication of derivative works of this document for use as a technical specification is
expressly prohibited.

The notice is:

"Copyright © 2018, 2020 Eclipse Foundation. This software or document includes material copied from
or derived from Jakarta® Authorization https://jakarta.ee/specifications/authorization/2.0/"

Disclaimers

THIS DOCUMENT IS PROVIDED "AS IS,” AND THE COPYRIGHT HOLDERS AND THE ECLIPSE
FOUNDATION MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DOCUMENT ARE SUITABLE FOR ANY
PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD
PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

2 Jakarta Authorization Final

https://www.eclipse.org/legal/efsl.php
https://www.eclipse.org/legal/efsl.php
https://jakarta.ee/specifications/authorization/2.0/

.1. Preface

THE COPYRIGHT HOLDERS AND THE ECLIPSE FOUNDATION WILL NOT BE LIABLE FOR ANY DIRECT,
INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR
THE PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of the copyright holders or the Eclipse Foundation may NOT be used in
advertising or publicity pertaining to this document or its contents without specific, written prior
permission. Title to copyright in this document will at all times remain with copyright holders.

.1. Preface

.2. Status of Document

This document is the Final Release of the Java TM Authorization Contract for Containers Version 1.5
specification and represents the definition of this technology as implemented by the reference
implementation (RI) and verified by the technology compatibility kit (TCK) . This specification was
developed under the Java Community Process (JCP2.7).

.3. Audience

This document is intended for developers of the RI and TCK and for those who will be delivering
implementations of this technology in their products.

4. Abstract

This specification defines new java.security.Permission classes to satisfy the Java EE authorization
model. The specification defines the binding of container access decisions to operations on instances of
these permission classes. The specification defines the semantics of policy providers that employ the
new permission classes to address the authorization requirements of Java EE, including the following:

* the definition of roles as named collections of permissions

* the granting to principals of permissions corresponding to roles

* the determination of whether a principal has been granted the permissions of a role (e.g.
isCallerInRole)

* the definition of identifier to role mappings that bind application embedded identifiers to
application scoped role names.

The specification defines the installation and configuration of authorization providers for use by
containers. The specification defines the interfaces that a provider must make available to allow
container deployment tools to create and manage permission collections corresponding to roles.

Final Jakarta Authorization 3

.5. Keywords

.5. Keywords

The keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”,
“RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in
RFC2119 [KEYWORDS].

.6. Acknowledgements

This draft of the specification incorporates the contributions of the RI and TCK teams with the output
of the JSR115 Expert Group. The JSR 115 Expert Group included the following members:

Steven Bazyl RSA Security, Inc.

Sean Dolan Hitachi Computer Products

Herb Erickson SilverStream Software

Gary Ellison Sun Microsystems

Neil Forrest Dyoti Enterprises Ltd

Johan Gellner Tmax Soft, Inc.

Craig Heath Individual

Hal Lockhart Entegrity Solutions

Larry McCay Hewlett-Packard Company

Serge Mister Entrust, Incorporated

Ron Monzillo Sun Microsystems

Anthony Nadalin Tivoli Systems, Incorporated
Nataraj Nagaratnam International Business Machines Corporation
Vijakumar Natarajan Borland Software Corporation
Raymond K. Ng Oracle Corporation

Samir Nigam Sybase, Incorporated

Henry Pasternack Netegrity, Incorporated

Paul Patrick BEA Systems

Francis Pouatcha Individual

4 Jakarta Authorization Final

.6. Acknowledgements

Jyri Virkki iPlanet

The RI, the TCK, and the improvements to the specification made as a result of the experiences gained
during these actvities are the result of the fine work of the following individuals:

Jean-Francois Arcand Sun Microsystems
Carla Carlson Sun Microsystems

Shing Wai Chan Sun Microsystems

Paul Hendley Sun Microsystems

Kumar Jayanti Sun Microsystems

Eric Jendrock Sun Microsystems
Jagadesh Babu Munta Sun Microsystems
Tony Ng Sun Microsystems

Craig Perez Oracle America, Inc.

Raja Perumal Sun Microsystems

Deepa Singh Sun Microsystems
Harpreet Singh Sun Microsystems
Nithya Subramanian Sun Microsystems

The following people are among many who commented on the specification, and in so doing,
contributed to its final form. I would like to recognize the contributions of everyone who commented
on the specification.

Rajeev Angal iPlanet

Lambert Boskamp SAP AG

William Cox BEA Systems

Paul Ferwerda BEA Systems

Charlie Lai Sun Microsystmes

Rosanna Lee Sun Microsystems

Robert Naugle Hewlett-Packard Company

Bob Scheifler Sun Microsystems

Final Jakarta Authorization 5

.6. Acknowledgements

Bill Shannon Sun Microsystems
Neil Smithline BEA Systems
Sirish Vepa Sybase, Incorporated

Kai Xu Sun Microsystems

6 Jakarta Authorization

Final

1.1. Introduction

Chapter 1. Overview

This specification defines a contract between Jakarta EE containers and authorization policy modules
such that container authorization functionality can be provided as appropriate to suit the operational
environment.

1.1. Introduction

The contract defined by this specification is divided into three subcontracts. Taken together, these
subcontracts describe the installation and configuration of authorization providers such that they will
be used by containers in performing their access decisions. The three subcontracts are the Provider
Configuration Subcontract, Policy Configuration Subcontract, and the Policy Decision and Enforcement
Subcontract.

r A
| |
authorization " policy decisionard | authorization
query : enforcement subcontract : result
| Policy provider |
L - pOll Cy -
— decision E—
point

statements

policy configuration
subcontract

Figure 1-1 Policy Configuration and Enforcement Subcontracts

1.2. Terminology

Jakarta EE application

A collection of Jakarta EE modules that must share a common principal-to-role-
mapping
deploy (e.g. an application)

Final Jakarta Authorization 7

1.2. Terminology

The sequence of operations comprised of completing the declaration of an
application or module’s dependencies on container facilities, binding the declared
dependencies to specific mechanisms or features of an operational environment,
installing or distributing the application software and related configuration
information to one or more application servers, and activating the software such
that it is available to service requests.

undeploy (e.g. an application)

The combined process of stopping an application and then removing the software
and configuration information corresponding to the application or a module of
the application from one or more application servers.

redeploy (e.g. a module of an application)

The repackaging of an application or module to accommodate modification of
implementation and or of declared dependencies and or of the binding of
declared dependencies to mechanisms, combined with undeploying a
corresponding module or application, followed by redistribution and activation of
the modified software and or configuration.

grant
The act of assigning to entities the right to perform a set of activities that is the
subject of an authorization decision (that is, a permission).

hostname
The name of a logical host of an application server, as may be used in the
composition of a servlet policy context identifier.

JAAS Policy interface
The javax.security.auth.Policy abstract class.

JAAS Policy provider
An instance of a class that implements the JAAS Policy interface.

permission
Represents a set of activities (a set of one or more operations on some set of one
or more resources) that is the target of an authorization decision.

Policy Context

The collection of policy statements within a policy provider that effect access to
the resources of one or more deployed modules.

Policy Context Identifier

A unique string value that identifies the collection of policy statements
corresponding to a policy context within a policy provider.

policy statement

8 Jakarta Authorization Final

1.3. Assumptions

A representation of the circumstances under which the set of activities
represented by a permission are to be authorized.

excluded policy statement

A representation of the decision not to authorize a set of activities represented by
a permission independent of factors that might otherwise effect the outcome of
the decision.

unchecked policy statement

A representation of the decision to authorize a set of activities represented by a
permission independent of factors that might otherwise effect the outcome of the
decision.

principal

1. (Java) A security attribute acquired as a result of authentication by entities
that perform activities.

2. An entity that performs activities.

principal-to-role mapping
The act of granting to principals the set of permissions that comprise a role.
privilege

A security attribute that may be assigned to entities and that may be used to
differentiate an entity’s right to perform activities.

Provider

The software component that contains implementations of the policy
configuration, and policy decision classes defined by this specification.

reference-to-role mapping

The component-scoped transformation of component embedded role aliases into
application-scoped role names. The transformation is defined at application
deployment and perhaps modified by policy management.

role
1. A named set of permissions that may be granted to principals.

2. A principal that has been granted permissions or that is used as a privilege.

1.3. Assumptions

1. The contract defined in this specifiction must be applicable to Jakarta EE 9 and future versions of
the Jakarta EE platform.

2. We are defining a contract to be satisfied by “standard” Java SE Policy providers.

Final Jakarta Authorization 9

1.4.

10.

11.

Requirements

Jakarta EE 9 platforms will be required to implement the contract defined by this specification. This
contract will be a required element of subsequent versions of the Jakarta EE platform.

We do not expect to add new decision interfaces to Policy (JAAS or Java SE) to accomplish the work
of this specification.

Jakarta EE application roles will be modeled as collections of permissions that are granted to
principals.

A principal that is in a role is granted all the permissions of the collection. However, the converse is
not true. That is, a principal that has been granted all the permissions of a role is not necessarily in
the role (as determined by isCallerInRole()).

This contract will shift the responsibility for performing all of the authorization decisions
pertaining to a Jakarta EE application to the policy provider. Accordingly, the following mappings
will become the responsibility of the provider.

o permissions to roles
o principals to roles
o (Application embedded) role references to role names

It is assumed that there are providers that are unable to enumerate all the permissions that pertain
to a subject/protection domain before returning from Policy.getPermissions().

Any interfaces that this contract defines to be used by containers and or container deployment
tools to create policy statements within a policy provider must be compatible with a module-at-a-
time application deployment mechanism.

Where the Jakarta Enterprise Beans or Jakarta Servlet specifications are incomplete or ambiguous
in their specification of authorization functionality, the contract defined in this document may
require additional semantics. Additional or clarifying semantics will only be adopted by this
specification based on their acceptance by the committers of the corresponding component
specification.

The Jakarta Enterprise Beans policy decisions performed by providers may require access to the
arguments of the Enterprise Bean invocation and or (for entity beans) the container managed
Enterprise Bean instance state.

1.4. Requirements

1.

10

This contract must support providers that are unable to determine, before returning from
Policy.getPermissions(), all the permissions that pertain to a subject/protection domain.

Each Policy provider that satisfies this contract must perform or delegate to another provider all
the permission evaluations requested via its interface in the JRE; not just those made by the
container to implement Jakarta EE security functionality.

Each provider must export interfaces (defined by this contract) for use by containers and or
container deployment tools to create policy statements within the policy store of the provider.
These interfaces must be used when an application or module is deployed in a container.

Jakarta Authorization Final

IS

~

o]

10

1.5. Non Requirements

Each provider must satisfy all of the authorization requirements of the Jakarta Enterprise Beans
and Jakarta Servlet specifications corresponding to the target platform. The provider is not
required to satisfy the authorization requirements pertaining to any of the above specifications for
which the target platform is not a compatible implementation.

The evaluation of a permission corresponding to a resource must identify the context of the
resource’s use such that different policy can be applied to a resource used in different contexts
(that is, applications or instances of an application).

In the case of Jakarta Servlet resources, the provider must be able to associate a distinct policy
context with each context root (including context roots created to support virtual hosting) hosted
by the server.

In protecting Jakarta Servlet resources, a provider must select the policy statements that apply to a
request according to the constraint matching and servlet mapping rules defined by the Jakarta
Servlet specification.

To support this contract in a Jakarta Servlet environment, a container or its deployment tools must
create policy statements as necessary to support Servlet’s “default role-ref semantic”.

For a container to support this contract, it must execute in an environment controlled by a Java SE
SecurityManager. Containers may also execute in environments that are not controlled by a Java SE
SecurityManager. Running Without a SecurityManager defines changes to this contract that apply
to containers running without a Java SE SecurityManager.

Policy providers must perform the permission evaluations corresponding to container pre-dispatch
decisions and application embedded privilege tests (i.e isUserInRole and isCallerInRole) without
requiring that containers establish particular values for any of the non-principal attributes of the
one or more java.security.ProtectionDomain objects that are the subject of the evaluation.

1.5. Non Requirements

1.

2.

3.

4.

3.

6.

This specification does not require that containers support server-side authentication module plug-
ins for the purpose of populating subjects with authorization provider specific principals.

This specification does not require that subjects be attributed with role principals as a result of
authentication.

This specification does not define or mandate a specific policy language to be used by providers.
Each provider must define its own syntax, mechanisms, and administrative interfaces for granting
permissions to principals.

The specification does not require that providers support a policy syntax for granting to principals
roles as collections of permissions.

Although the specification is focused on defining permissions and policy for use by Jakarta EE
containers, we make no restrictions on the use of this information by other containers or
applications, or on support by containers or providers of other permissions or policy.

It is not the intent of this specification to extend or modify the Jakarta EE authorization model to be
equivalent to standard RBAC models for access control.

Final Jakarta Authorization 11

1.6. Running Without a SecurityManager

1.6. Running Without a SecurityManager

The following list defines changes to this contract that apply to containers running without a Java SE
SecurityManager.

1. The restrictions defined in Permission to Configure Policy need not be enforced. Also, the
containers of the application server must not be denied permission to perform any operation that
would have been permitted in the presence of a SecurityManager.

2. Such containers are not required (before dispatching a call) to associate an AccessControlContext
with the call thread (as otherwise required by Pre-dispatch Decision and Jakarta Enterprise Beans
Pre-dispatch Decision).

3. When performing the operations defined in Checking AccessControlContext Independent Grants
and in Checking the Caller for a Permission, such containers must not employ the
SecurityManager.checkPermission techniques defined in these sections.

4. When using the AccessController.checkPermission technique of Checking the Caller for a
Permission, the calling container must ensure that the principals of the caller are contained in the
AccessControlContext associated with the thread on which the call to checkPermission is made.

1.7. Servlet or E]JB only containers

The requirements of this specification that must be satisfied by a target platform that is a compatible
implementation of one but not both of the Jakarta Servlet and Jakarta Enterprise Beans specifications
are reduced as described in the next two sections.

1.8. Servlet Only Containers

A platform that is a compatible implementation of the Jakarta Servlet specification and that is not a
compatible implementation of the Jakarta Enterprise Beans specification must satisfy all of the
requirements of this specification with the following exceptions:

1. the policy configuration requirements defined in Jakarta Enterprise Beans Policy Context
Identifiers and in Translating Jakarta Enterprise Beans Deployment Descriptors

2. the policy enforcement requirements defined in Policy Enforcement by Jakarta Enterprise Beans
Containers and Provider Support for Jakarta Enterprise Beans Policy Enforcement

3. the policy context handler requirements defined in SOAPMessage Policy Context Handler, and
EnterpriseBean Policy Context Handler, and Jakarta Enterprise Beans Arguments Policy Context
Handler

1.9. E]JB Only Containers

A platform that is is a compatible implementation of the Jakarta Enterprise beans specification and
that is not a compatible implementation of the Jakara Servlet specification must satisfy all of the

12 Jakarta Authorization Final

1.9. EJB Only Containers

requirements of this specification with the following exceptions:
1. the policy configuration requirements defined in Servlet Policy Context Identifiers and in
Translating Servlet Deployment Descriptors

2. the policy enforcement requirements defined in Policy Enforcement by Servlet Containers and
Provider Support for Servlet Policy Enforcement

3. the policy context handler requirements defined in HttpServletRequest Policy Context Handler

Final Jakarta Authorization 13

2.1. Policy Implementation Class

Chapter 2. Provider Configuration
Subcontract

The Provider Configuration Subcontract defines the requirements placed on providers and containers
such that Policy providers may be integrated with containers.

2.1. Policy Implementation Class

The contract defined by this specification has been designed to work in Java SE 8 or later Java Standard
Edition environments with the default java.security.Policy implementation class.

Java platforms provide standard security properties whose values may be defined to cause
replacement of the default system Policy implementation classes. The security property,
policy.provider ”, may be used to replace the default java.security.Policy implementation class.
Similarly, the security property, “auth.policy.provider”, may be used to replace the default
javax.security.auth.Policy implementation class. These properties are defined in the Java security
properties file, and replacement is accomplished by setting their value to the fully qualified name of
the desired Policy implementation class. The contract defined in this specification, is dependent on the
Policy replacement mechanisms of the target Java environment. An application server that supports
this contract must allow replacement of the top level java.security.Policy object used by every JRE of
the containers of the application server.

2.2. Permission Implementation Classes

This contract defines a Java standard extension package, jakarta.security.jacc, that contains (among
other things) Permission classes to be used by containers in their access decisions.

2.3. Policy Configuration Interface

The jakarta.security.jacc package defines an abstract factory class that implements a static method
that uses a system property to find and instantiate a provider specific factory implementation class.
The abstract factory class is jakarta.security.jacc.PolicyConfigurationFactory, the static method is
getPolicyConfigurationFactory, and the system property is
jakarta.security.jacc.PolicyConfigurationFactory.provider .

The abstract factory class also defines an abstract public method used to create or locate instances of
the provider specific class that implements the interface used to define policy contexts within the
associated Policy provider. The method is getPolicyConfiguration and the interface is
jakarta.security.jacc.PolicyConfiguration.

Use of the PolicyConfiguration interface is defined in Policy Configuration Subcontract.

14 Jakarta Authorization Final

2.4. PolicyContext Class and Context Handlers

2.4. PolicyContext Class and Context Handlers

This jakarta.security.jacc package defines a utility class that is used by containers to communicate
policy context identifiers to Policy providers. The utility class is jakarta.security.jacc.PolicyContext,
and this class implements static methods that are used to communicate policy relevant context values
from containers to Policy providers. Containers use the static method PolicyContext.setContextID to
associate a policy context identifier with a thread on which they are about to call a decision interface
of a Policy provider. Policy providers use the static method PolicyContext.getContextID to obtain the
context identifier established by a calling container. The role of policy context identifiers in access
decisions is described in Policy Contexts and Policy Context Identifiers.

In addition to the methods wused to communicate policy context identifiers, the
jakarta.security.jacc.PolicyContext class also provides static methods that allow container specific
context handlers that implement the jakarta.security.jacc.PolicyContextHandler interface to be
registered with the PolicyContext class. The PolicyContext class also provides static methods that allow
Policy providers to activate registered handlers to obtain additional policy relevant context to apply in
their access decisions.

Use of the PolicyContext class is defined in Policy Configuration Subcontract.

2.5. What a Provider Must Do

Each JRE of an application server must be provided with classes that implement the
PolicyConfigurationFactory class and PolicyConfiguration interface. These classes must be compatible
with the Policy implementation class installed for use by the JRE. In the case where the provider is not
seeking to replace the Policy implementation used by the JRE, no other components need be provided.

If the provider is seeking to replace the Policy implementation used by the JRE, then the JRE must be
provided with an environment specific Policy implementation class. If the JRE is running a Java SE 8 or
later Java Standard Edition environment, then it must be provided with an implementation of the
java.security.Policy class.

A replacement Policy object must assume responsibility for performing all policy decisions within the
JRE in which it is installed that are requested by way of the Policy interface that it implements. A
replacement Policy object may accomplish this by delegating non- jakarta.security.jacc policy
decisions to the corresponding default system Policy implementation class. A replacement Policy
object that relies in this way on the corresponding default Policy implementation class must identify
itself in its installation instructions as a “delegating Policy provider”.

The standard security properties mechanism for replacing a default system Policy implementation (see
Policy Implementation Class) should not be used to replace a default system Policy provider with a
delegating Policy provider.

Final Jakarta Authorization 15

2.6. Optional Provider Support for JAAS Policy Object

2.6. Optional Provider Support for JAAS Policy Object

In Java SE 8, the subject based authorization functionality of the JAAS Policy interface has been
integrated into java.security.Policy, and the JAAS Policy interface (as a separate entity) has been
deprecated. This does not mean that the JAAS Policy interface was removed, but rather that the
essential parts of it have been tightly integrated into the Java SE 8 platform.

According to this contract, a Java SE 8 or later Java Standard Edition security environment may
support replacement of the JAAS Policy object if and only if all jakarta.security.jacc policy decisions
performed by the replacement JAAS Policy object return the same result as when the
java.security.Policy interface is used. To satisfy this requirement, the replacement JAAS Policy object
must be compatible with the implementations of PolicyConfigurationFactory and PolicyConfiguration
interface provided for use with the java.security.Policy implementation class.

2.7. What the Application Server Must Do

An application server or container must bundle or install the jakarta.security.jacc standard
extension. This package must include the abstract jakarta.security.jacc.PolicyConfigurationFactory
class, the jakarta.security.jacc.PolicyConfiguration and jakarta.security.jacc.PolicyContextHandler
interfaces, and implementations of the jakarta.security.jacc.PolicyContextException exception, the
jakarta.security.jacc Permission classes, and the jakarta.security.jacc.PolicyContext utility class. The
Permission classes of the jakarta.security.jacc package are:

* jakarta.security.jacc.EJBMethodPermission

* jakarta.security.jacc.EJBRoleRefPermission

* jakarta.security.jacc.WebResourcePermission

* jakarta.security.jacc.WebRoleRefPermission

* jakarta.security.jacc.WebUserDataPermission
To enable delegation of non- jakarta.security.jacc policy decisions to default system Policy providers,
all application servers must implement the following Policy replacement algorithm. The intent of the
algorithm is to ensure that Policy objects can capture the instance of the corresponding default system

Policy object during their integration into a container and such that they may delegate non-container
policy evaluations to it.

For each JRE of a Jakarta EE 9 or later version Jakarta EE application server, if the system property
""jakarta.security.jacc.policy.provider " ” is defined, the application server must construct an instance
of the class identified by the system property, confirm that the resulting object is an instance of
java.security.Policy, and set, by calling the java.security.Policy.setPolicy method, the resulting
object as the corresponding Policy object used by the JRE. For example:

16 Jakarta Authorization Final

2.8. Modifications to the JAAS SubjectDomainCombiner

String javaPolicy = System.getProperty("jakarta.security.jacc.policy.provider");

if (javaPolicy != null) {
try {
java.security.Policy.setPolicy((java.security.Policy)
Class.forName(javaPolicy).newInstance());
} catch (ClassNotFoundException cnfe) {
// problem with property value or classpath
} catch (I1legalAccessException iae) {
// problem with policy class definition
} catch (InstantiationException ie) {
// problem with policy instantiation
} catch (ClassCastException cce) {
// Not instance of java.security.policy

}

Once an application server has used either of the system properties defined in this section to replace a
Policy object used by a JRE, the application server must not use setPolicy to replace the corresponding
Policy object of the running JRE again.

The requirements of this section have been designed to ensure that containers support Policy
replacement and to facilitate delegation to a default system Policy provider. These requirements
should not be interpreted as placing any restrictions on the delegation patterns that may be
implemented by replacement Policy modules.

2.8. Modifications to the JAAS SubjectDomainCombiner

The reference implementation of the combine method of the JAAS SubjectDomainCombiner returns
protection domains that are constructed with a java.security.Permissions collection. This is the norm
in J2SE 1.3 environments, and it also occurs in J2SE 1.4 and Java Standard Edition 5.0 environments
when the installed JAAS Policy implementation class is not the com.sun.security.auth.PolicyFile class
(that is, the JRE is operating in backward compatibility mode with respect to JAAS Policy replacement).
The use of java.security.Permissions by the SubjectDomainCombiner forces JAAS Policy providers to
compute all the permissions that pertain to a subject and code source and effectively precludes
integration of Policy subsystems that are not capable of doing so. To ensure that the implementation of
the JAAS SubjectDomainCombiner does not preclude integration of a class of Policy providers, this
contract imposes the following requirement and recommendation on application servers.

To satisfy the contract defined by this specification, an application server must install or bundle, such
that it is used by every JRE of the application server, a javax.security.auth.SubjectDomainCombiner
whose combine method returns protection domains constructed using the permission collections
returned by javax.security.auth.Policy.getPermisions . It is recommended that this requirement be
satisfied by Jakarta EE 9 and later version Jakarta EE application servers in the case where

Final Jakarta Authorization 17

2.8. Modifications to the JAAS SubjectDomainCombiner

javax.security.auth.Policy is used (in backward compatibility mode) to perform
jakarta.security.jacc policy decisions.

18 Jakarta Authorization Final

3.1. What a Jakarta EE Platform’s Deployment Tools Must Do

Chapter 3. Policy Configuration Subcontract

The Policy Configuration Subcontract defines the interactions between container deployment tools and
providers to support the translation of declarative Jakarta EE authorization policy into policy
statements within a Java SE Policy provider.

This subcontract also applies to the translation of authorization policy annotations that have an
equivalent representation in Jakarta EE deployment descriptor policy constructs (i.e., security-
constraint, method-permission, security-role-ref, and exclude-1list elements).

3.1. What a Jakarta EE Platform’s Deployment Tools
Must Do

The getPolicyConfigurationFactory method must be used in every JRE to which the components of the
application or module are being deployed to find or instantiate PolicyConfigurationFactory objects.

PolicyConfigurationFactory policyConfigurationFactory =
PolicyConfigurationFactory.getPolicyConfigurationFactory();

The getPolicyConfiguration method of the factories must be used to find or instantiate
PolicyConfiguration objects corresponding to the application or modules being deployed.

String petContextID = "acme-pet-server /petstore";

PolicyConfiguration petPolicyConfiguration =
policyConfigurationFactory.getPolicyConfiguration(petContextID, true);

The declarative authorization policy statements derived from the application or module deployment
descriptor(s) must be translated to create instances of the corresponding jakarta.security.jacc
Permission classes.

WebResourcePermission webResourcePermission =
new WebResourcePermission("/elephant”, "GET");

Methods of the PolicyConfiguration interface must be used with the permissions resulting from the
translation to create policy statements within the PolicyConfiguration objects.

petPolicyConfiguration.addToRole("customer”, webResourcePermission);

The PolicyConfiguration objects must be linked such that the same principal-to-role mapping will be

Final Jakarta Authorization 19

3.1. What a Jakarta EE Platform’s Deployment Tools Must Do

applied to all the modules of the application.
petPolicyConfiguration.linkConfiguration(petFoodPolicyConfiguration);

The PolicyConfiguration objects must be placed in Service such that they will be assimilated into the
Policy providers used by the containers to which the application has been deployed.

petPolicyConfiguration.commit();

Independent of this specification, Jakarta EE deployment tools must translate and complete the
declarative policy statements appearing in deployment descriptors into a form suitable for securing
applications on the platform. These deployment tools must combine policy annotations in Java code
with policy statements appearing in deployment descriptors to yield complete representations of
authorization policy suitable for securing applications on the platform. The rules for combining
authorization policy annotations with declarative policy statements are described in the Jakarta
Enterprise Beans, Jakarta Servlet, and Jakarta EE platform specifications. Independent of whether
annotations factor in the translation, the resulting policy statements may differ in form from the policy
statements appearing in the deployment descriptors. The policy translation defined by this subcontract
is described assuming that the policy statement form used by a platform is identical to that used to
express policy in the deployment descriptors. Where this is not the case, the output of the translation
must be equivalent to the translation that would occur if policy was completely specified in the
deployment descriptors and the translation had proceeded directly from the deployment descriptors to
the Java SE policy forms defined by this subcontract. Two translations are equivalent if they produce
corresponding collections of unchecked, excluded, and role permissions, and if all of the permissions
of each such collection are implied" by the permissions of the corresponding or excluded collection of
the other translation. Translation equivalence is only required with respect to the permission types
that are the subject of the translation.

3.1.1. Policy Contexts and Policy Context Identifiers

It must be possible to define separate authorization policy contexts corresponding to each deployed
instance of a Jakarta EE module. This per module scoping of policy context is necessary to provide for
the independent administration of policy contexts corresponding to individual application modules
(perhaps multiply deployed) within a common Policy provider.

Each policy context contains all of the policy statements (as defined by this specification) that effect
access to the resources” in one or more deployed modules. At policy configuration, a
PolicyConfiguration object is created for each policy context, and populated with the policy statements
(represented by permission objects) corresponding to the context. Each policy context has an
associated policy context identifier.

In the Policy Decision and Enforcement Subcontract, access decisions are performed by checking
permissions that identify resources by name and perhaps action. When a permission is checked, this

20 Jakarta Authorization Final

3.1. What a Jakarta EE Platform’s Deployment Tools Must Do

specification requires identification of the authorization policy context in which the evaluation is to be
performed (Setting the Policy Context).

3.1.1.1. Policy Context Life Cycle

Figure 3-2 depicts the policy context life cycle as effected through the methods of the
PolicyConfiguration interface. A policy context is in one of three states and all implementations of the
PolicyConfiguration interface must implement the state semantics defined in this section.

* open

A policy context in the open state must be available for configuration by any of the methods of the
PolicyConfiguration interface. A policy context in the open state must not be assimilated at
Policy.refresh into the policy statements used by the Policy provider in performing its access
decisions.

e inService

A policy context in the inService state must be assimilated at Policy.refresh into the policy
statements used by its provider. When a provider’s refresh method is called, it must assimilate only
policy contexts that are in the inService state and it must ensure that the policy statements put into
service for each policy context are only those defined in the context at the time of the call to
refresh. A policy context in the inService state must be unavailable for additional configuration. A
policy context in the inService state must be transitioned to the open state when it is returned as a
result of a call to getPolicyConfiguration. A policy context is transitioned to the inService state by
calling the commit method, and only a policy context in the open state may be transitioned to the
inService state.

e deleted

A policy context in the deleted state must be unavailable for configuration and it must be
unavailable for assimilation into its associated Provider. A policy context in the deleted state must
be transitioned to the open state when it is returned as a result of a call to getPolicyConfiguration.
A policy context is transitioned to the deleted state by calling the delete method.

Note that for a provider implementation to be compatible with multi-threaded environments, it may
be necessary to synchronize the refresh method of the provider with the methods of its
PolicyConfiquration interface and with the getPolicyConfiguration and inService methods of its
PolicyConfiqgurationFactory.

Final Jakarta Authorization 21

3.1. What a Jakarta EE Platform’s Deployment Tools Must Do

linkConfiguration
remaovellncheckedPolicy
addTolncheckedPolicy
emoveExcludedPalic
afdToExcludedPaligy

rermoveRole

addToRaol

open inService
T | 1 getContexdI D
= Jd=— oetPolicyConfiguration

getPolicyConfiguration delete| | commit getPolicyConfiguration

inService inService

delete inSenice

delete getContextiD getContextiD

Figure 3-2 PolicyConfiguration State Table

3.1.1.2. Linking Policy Contexts

In the Jakarta EE security model, principal-to-role mappings have application scope; that is, the same
principal-to-role mappings must apply in the access decisions applied at all of the modules (that may
represent separate policy contexts) that comprise an application. Same application policy contexts
must be associated by calling the PolicyConfiguration.linkConfiguration method. This method must
create a transitive and symmetric relationship within the provider and between this
PolicyConfiguration and the argument PolicyConfiguration, such that they and all PolicyConfiguration
objects otherwise linked to either of them share the same principal-to-role mappings. The semantics of
the association must preserve the invariant that at most one principal-to-role mapping may apply to
any PolicyConfiguration.

3.1.2. Servlet Policy Context Identifiers

Servlet requests may be directed to a logical host using various physical or virtual host names or
addresses, and an application server may be composed of multiple logical hosts. A virtual application
server may be realized as a cluster of physical application servers, each hosting some subset of the
logical hosts of the virtual application server. This specification uses the term hostname to refer to the
name of a logical host that processes Servlet requests. A servlet container is responsible for mapping
the target name or address information of an HTTP request to the appropriate hostname.

To satisfy this specification, an application server must establish servlet policy context identifiers
sufficient to differentiate all instances of a web application deployed on the logical host or on any
other logical host that may share the same policy statement repository. One way to satisfy this
requirement is to compose policy context identifiers by concatenating the hostname with the context
path (as defined in the Servlet specification) identifying the web application at the host.

When an application is composed of multiple web modules, a separate policy context must be defined
per module. This is necessary to ensure that url-pattern based and servlet name based policy
statements configured for one module do not interfere with those configured for another.

The policy contexts assigned to web applications and web modules must be distinct from those to

22 Jakarta Authorization Final

3.1. What a Jakarta EE Platform’s Deployment Tools Must Do

which any Jakarta Enterprise Beans™ components are assigned.

3.1.3. Translating Servlet Deployment Descriptors

A reference to a PolicyConfiguration object must be obtained by calling the getPolicyConfiguration
method on the PolicyConfigurationFactory implementation class of the provider configured into the
container. The policy context identifier used in the call to the getPolicyConfiguration method must be a
String composed as described in Servlet Policy Context Identifiers. The security-constraint and
security-role-ref elements in the deployment descriptor must be translated into permissions and
added to the PolicyConfiguration object as defined in the following sections. Before the translation is
performed, all policy statements must have been removed™ from the policy context associated with
the returned PolicyConfiguration.

3.1.3.1. Programmatic Servlet Registrations

Jakarta Servlet containers support the programmatic registration and security configuration of
servlets. The servlet policy translation defined by this subcontract is described assuming that all such
programmatic registration and security configuration has completed (for the servlet module
corresponding to the policy context) before the translation is performed and that the resulting security
related configuration has been represented in its equivalent form within the deployment descriptors
on which the translation is performed. Where this is not the case, the result of the translation must be
equivalent, as described previously, to the translation that would occur if it was the case. The mapping
to equivalent deployment descriptor representation of security related configuration corresponding to
programmatically registered servlets is defined in the Jakarta Servlet specification.

If the results of a prior translation are invalidated by subsequent programmatic registration and
security configuration (as might occur if an initial translation is performed before the programmatic
effects), the translation must be repeated. Before the translation is repeated, a reference must be
obtained to the PolicyConfiguration object in the open state, and its policy statements must be
removed. If the PolicyConfiguration has already been linked to other committed policy contexts, then it
may be necessary or preferable (in order to satisfy the linking requirements defined in Deploying an
Application or Module) to obtain the reference and remove the policy statements while preserving the
linkages established for the context by the prior translation. Policy statements may be removed while
preserving linkages by calling the removeUncheckedPolicy, removeExcludedPolicy, and removeRole
methods on the open PolicyConfiguration object.

3.1.3.2. Translating security-constraint Elements

The paragraphs of this section describe the translation of security-constraints into
WebResourcePermission and WebUserDataPermission objects constructed using qualified URL pattern
names. In the exceptional case, as defined in "Qualified URL Pattern Names", where a pattern is made
irrelevant by a qualifying pattern, the permission instantiations that would result from the translation
of the pattern, as described below, must not be performed. Otherwise, the translation of URL patterns
in security constraints must yield an equivalent translation to the translation that would result from
following the instructions in the remainder of this section.

Final Jakarta Authorization 23

3.1. What a Jakarta EE Platform’s Deployment Tools Must Do

A WebResourcePermission and a WebUserDataPermission™ object must be added to the excluded policy
statements for each distinct url-pattern occurring in the security-constraint elements that contain an
auth-constraint naming no roles (i.e an excluding auth-constraint). The permissions must be
constructed using the qualified (as defined in "Qualified URL Pattern Names") pattern as their name
and with actions obtained by combining (as defined in "Combining HTTP Methods") the collections
containing the pattern and occurring in a constraint with an excluding auth-constraint. The
constructed permissions must be added to the excluded policy statements by calling the
addToExcludedPolicy method on the PolicyConfiguration object.

A WebResourcePermission must be added to the corresponding role for each distinct combination in the
cross-product of” url-pattern and role-name occurring in the security-constraint elements that
contain an auth-constraint naming roles. If the “any authenticated user” role-name, “**”, occurs in an
auth-constraint, a WebResourcePermission must also be added to the “**” role. When an " auth-constraint
names the reserved role-name , "*", all of the patterns in the containing" security-constraint must be
combined with all of the roles defined in the web application; which must not include the role “**”
unless the application has defined an application role named “**”. Each WebResourcePermission object
must be constructed using the qualified pattern as its name and with actions defined by combining (as
defined in "Combining HTTP Methods") the collections containing the pattern and occurring in a
constraint that names (or implies via "*") the role to which the permission is being added. The resulting
permissions must be added to the corresponding roles by calling the addToRole method on the
PolicyConfiguration object.

A WebResourcePermission must be added to the unchecked policy statements for each distinct url-
pattern occurring in the security-constraint elements that do not contain an auth-constraint. Each
WebResourcePermission object must be constructed using the qualified pattern as its name and with
actions defined by combining (as defined in "Combining HTTP Methods") the collections containing the
pattern and occurring in a security-constraint without an auth-constraint. The resulting permissions
must be added to the unchecked policy statements by calling the addToUncheckedPolicy method on the
PolicyConfiguration object.

A WebUserDataPermission must be added to the unchecked policy statements for each distinct
combination of url-pattern and acceptable connection type resulting from the processing of the
security-constraint elements that do not contain an excluding auth-constraint. The mapping of
security-constraint to acceptable connection type must be as defined in "Mapping Transport
Guarantee to Connection Type". Each WebUserDataPermission object must be constructed using the
qualified pattern as its name and with actions defined by appending” a representation of the
acceptable connection type to the HTTP method specification obtained by combining (as defined in
"Combining HTTP Methods") the collections containing the pattern and occurring in a security-
constraint that maps to the connection type and that does not contain an excluding auth-constraint.
The resulting permissions must be added to the unchecked policy statements by calling the
addToUncheckedPolicy method on the PolicyConfiguration object.

A WebResourcePermission and a WebUserDataPermission must be obtained for each url-pattern in the
deployment descriptor and the default pattern, "/", that is not combined by the" web-resource-
collection elements of the deployment descriptor with every possible HTTP method value'”. The

24 Jakarta Authorization Final

3.1. What a Jakarta EE Platform’s Deployment Tools Must Do

permission objects must be constructed using the qualified pattern as their name and with actions
represented by an HTTP method specification that identifies all of the HTTP methods that do not occur
in combination with the pattern. The form of the HTTP method specification used in the permission
construction depends on the representation of the methods that occurred in combination with the
pattern. If the methods that occurred are represented by an HttpMethodExceptionList as defined in
"HTTP Method Exception List"), the permissions must be constructed using an HTTPMethodList
naming all of the HTTP methods named in the exception list. Conversely, if the methods that occurred
are represented by an HTTPMethodlList, the permissions must be constructed wusing an
HTTPMethodExceptionList naming all of the HTTP methods that occurred with the pattern. If a deny
uncovered HTTP methods semantic is in effect for the web module associated with the PolicyContext,
the resulting permissions must be added to the excluded policy statements by calling the
addToExcludedPolicy method on the PolicyConfiguration object. Otherwise, the permissions must be
added to the unchecked policy statements by calling the addToUncheckedPolicy method on the
PolicyConfiguration object.

Qualified URL Pattern Names

The URL pattern qualification described in this section serves to capture the best-matching semantics
of the Jakarta Servlet constraint model in the qualified names such that the WebResourcePermission and
WebUserDataPermission objects can be tested using the standard Java SE permission evaluation logic.

The WebResourcePermission and WebUserDataPermission objects resulting from the translation of a Jakarta
Servlet deployment descriptor must be constructed with a name produced by qualifying the URL
pattern. The rules for qualifying a URL pattern are dependent on the rules for determining if one URL
pattern matches another as defined in Servlet URL-Pattern Matching Rules, and are described as
follows:

 If the pattern is a path prefix pattern, it must be qualified by every path-prefix pattern in the
deployment descriptor matched by and different from the pattern being qualified. The pattern
must also be qualified by every exact pattern appearing in the deployment descriptor that is
matched by the pattern being qualified.

« If the pattern is an extension pattern, it must be qualified by every path-prefix pattern appearing in
the deployment descriptor and every exact pattern in the deployment descriptor that is matched by
the pattern being qualified.

 If the pattern is the default pattern, "/", it must be qualified by every other pattern except the
default pattern appearing in the deployment descriptor.

« If the pattern is an exact pattern, its qualified form must not contain any qualifying patterns.
URL patterns are qualified by appending to their String representation, a colon separated
representation of the list of patterns that qualify the pattern. Duplicates must not be included in the list

of qualifying patterns, and any qualifying pattern matched by another qualifying pattern may" be
dropped from the list.

Final Jakarta Authorization 25

3.1. What a Jakarta EE Platform’s Deployment Tools Must Do

QualifyingPatternList ::=
empty string | colon QualifyingPattern |
QualifyingPatternList colon QualifyingPattern

QualifiedPattern ::= Pattern QualifyingPatternList

All colon characters occurring within Pattern and QualifyingPattern elements must be transformed to
escaped encoding prior to inclusion of the corresponding element in the QualifiedPattern.

Any pattern, qualified by a pattern that matches it, is overridden and made irrelevant (in the
translation) by the qualifying pattern. Specifically, all extension patterns and the default pattern are
made irrelevant by the presence of the path prefix pattern "/*" in a deployment descriptor. Patterns
qualified by the "/*" pattern violate the URLPatternSpec constraints of WebResourcePermission and
WebUserDataPermission names and must be rejected by the corresponding permission constructors.

Combining HTTP Methods

The section defines the rules for combining HTTP method names occurring in web-resource-collection
elements that apply to a common url-pattern. The rules are commutative and associative and are as
follows:

* Lists of http-method elements combine to yield a list of http-method elements containing the union
(without duplicates) of the http-method elements that occur in the individual lists.

 Lists of http-method-omission elements combine to yield a list containing only the http-method-
omission elements that occur in all of the individual lists (i.e., the intersection).

* Alist of http-method-omission elements combines with a list of http-method elements to yield the list
of http-method-omission elements minus any elements whose method name occurs in the http-
method list.

* An empty list (of http-method and http-method-omission elements) represents the set of all possible
HTTP methods, including when it results from combination according to the rules described in this
section. An empty list combines with any other list to yield the empty list.

When these combining rules are applied to a list of collections, the result is always either an empty list,
a non-empty list of http-method elements, or a non-empty list of http-method-omission elements. When
the result is an empty list, the corresponding actions value is the null (or the empty string) value. When
the result is a non-empty list of http-method elements the corresponding actions value is a comma
separated list of the HTTP method names occurring in the http-method elements of the list. When the
result is a non-empty list of http-method-omission elements the corresponding actions value is an HTTP
method exception list (as defined in "HTTP Method Exception List") containing the HTTP method
names occurring in the http-method-omission elements of the list. The following table contains the three
alternative combination results and their corresponding actions values.

Table 3-1 HTTP Method Combination to Actions Correspondence

26 Jakarta Authorization Final

3.1. What a Jakarta EE Platform’s Deployment Tools Must Do

Combination Result Actions Value
empty list null or empty string
list of http-method elements HttpMethodList (e.g., “GET,POST”)
list of http-method-omission elements HttpMethodExceptionList (e.g.,”!PUT,DELETE”)

HTTP Method Exception List

An HTTP method exception list is used to represent, by set difference, a non-enumerable subset of the
set of all possible HTTP methods. An exception list represents the subset of the complete set of HTTP
methods formed by subtracting the methods named in the exception list from the complete set.

An exception list is distinguished by its first character, which must be the exclamation point (i.e., “!”)
character. A comma separated list of one or more HTTP method names must follow the exclamation
point. The syntax of an HTTP method list is formally defined as follows:

ExtensionMethod ::= any token as defined by IETF RFC 2616
(i.e., 1*[any CHAR except CTLS or separators as defined in RFC 2616])

HTTPMethod ::= “GET” | “POST” | “PUT” | “DELETE” | “HEAD” |
“OPTIONS” | “TRACE” | ExtensionMethod

HTTPMethodList ::= HTTPMethod | HTTPMethodList comma HTTPMethod

HTTPMethodExceptionList ::= exclaimationPoint HTTPMethodList

Mapping Transport Guarantee to Connection Type

A transport-quarantee (in a user-data-constraint) of NONE, or a security-constraint without a user-
data-constraint , indicates that the associated URL patterns and HTTP methods may be accessed over
any (including an unprotected) transport. A transport-guarantee of INTEGRAL indicates that acceptable
connections are those deemed by the container to be integrity protected. A transport-guarantee of
CONFIDENTIAL indicates that acceptable connections are those deemed by the container to be
protected for confidentiality.

Table 3-2 transport-guarantee to Acceptable Connection Mapping

transport-guarantee in constraint connection type String value
INTEGRAL ":INTEGRAL"
CONFIDENTIAL ":CONFIDENTIAL"
NONE (including no user-data-constraint) null

Final Jakarta Authorization 27

3.1. What a Jakarta EE Platform’s Deployment Tools Must Do

3.1.3.3. Translating Servlet security-role-ref Elements

For each security-role-ref appearing in the deployment descriptor a corresponding
WebRoleRefPermission must be added to the corresponding role. The name of the WebRoleRefPermission
must be the servlet-name in whose context the security-role-ref is defined. The actions of the
WebRoleRefPermission must be the value of the role-name (that is the reference), appearing in the
security-role-ref. The deployment tools must call the addToRole method on the PolicyConfiguration
object to add the WebRoleRefPermission object resulting from the translation to the role identified in the
role-link appearing in the security-role-ref.

Additional WebRoleRefPermission objects must be added to the PolicyConfiguration as follows. For each
servlet element in the deployment descriptor a WebRoleRefPermission must be added to each security-
role of the application whose name does not appear as the role-name in a security-role-ref within the
servlet element. If the “any authenticated user” role-name, “**”, does not appear in a security-role-ref
within the servlet, a WebRoleRefPermission must also be added for it. The name of each such
WebRoleRefPermission must be the servlet-name of the corresponding servlet element. The actions (that
is, reference) of each such WebRoleRefPermission must be the corresponding (non-appearing) role-name.
The resulting permissions must be added to the corresponding roles by calling the addToRole method
on the PolicyConfiguration object.

For each security-role defined in the deployment descriptor and the “any authenticated user” role,
«» an additional WebRoleRefPermission must'” be added to the corresponding role by calling the
addToRole method on the PolicyConfiguration object. The name of all such permissions must be the
empty string, and the actions of each such permission must be the role-name of the corresponding role.

3.1.3.4. Servlet URL-Pattern Matching Rules

This URL pattern matches another pattern if they are related, by case sensitive comparison, as follows:

* their pattern values are String equivalent, or
* this pattern is the path-prefix pattern "/*", or

* this pattern is a path-prefix pattern (that is, it starts with "/" and ends with "/*") and the other
pattern starts with the substring of this pattern, minus its last 2 characters, and the next character
of the other pattern, if there is one, is "/", or

* this pattern is an extension pattern (that is, it starts with "*") and the other pattern ends with this
pattern, or

* this pattern is the special default pattern, "/", which matches all other patterns.

Table 3-3 url-pattern Types by Example

pattern type example
exact /acme/widget/hammer
path prefix /acme/widget/*

28 Jakarta Authorization Final

3.1. What a Jakarta EE Platform’s Deployment Tools Must Do

pattern type example

extension *html

default /

3.1.3.5. Example

This example demonstrates the WebResourcePermission and WebUserDataPermission objects that would
result from the translation of a deployment descriptor that contained the following security-
constraint elements.

SIS
The following security-constraint excludes access to the patterns and method
combinations defined by the two contained web-resource-collections.

The first collection excludes access
by all methods except GET and POST, while the second collection excludes
access by all HTTP methods.
-->
<security-constraint>
<web-resource-collection>
<web-resource-name>sc1.c1</web-resource-name>
<url-pattern>/a/*</url-pattern>
<url-pattern>/b/*</url-pattern>
<url-pattern>/a</url-pattern>
<url-pattern>/b</url-pattern>
<http-method-omission>GET</http-method-omission>
<http-method-omission>P0ST</http-method-omission>
</web-resource-collection>

<web-resource-collection>
<web-resource-name>sc1.c2</web-resource-name>
<url-pattern>*.asp</url-pattern>

</web-resource-collection>

<auth-constraint/>
</security-constraint>

<I--
The following security-constraint restricts access to the patterns and method
combinations defined by the two contained web-resource-collections to callers
in role R1 who connect using a confidential transport.

-->

<security-constraint>
<web-resource-collection>

Final Jakarta Authorization 29

3.1. What a Jakarta EE Platform’s Deployment Tools Must Do

<web-resource-name>sc2.c1</web-resource-name>
<url-pattern>/a/*</url-pattern>
<url-pattern>/b/*</url-pattern>
<http-method>GET</http-method>
</web-resource-collection>

<web-resource-collection>
<web-resource-name>sc2.c2</web-resource-name>
<url-pattern>/b/*</url-pattern>
<http-method>P0ST</http-method>

</web-resource-collection>

<auth-constraint>
<role-name>R1</role-name>
</auth-constraint>

<user-data-constraint>
<transport-guarantee>CONFIDENTIAL</transport-guarantee>
</user-data-constraint>

</security-constraint>

Qualified URL Pattern Names from Example contains the qualified URL pattern names that would
result from the translation of the security-constraint elements (including the qualified form of the
default pattern). The second column of Qualified URL Pattern Names from Example contains the
canonical form of the qualified names. The values in the second column have been derived from the
values in the first column by removing qualifying patterns matched by other qualifying patterns.

Table 3-4 Qualified URL Pattern Names from Example

Qualified URL Pattern Name Canonical Form
type
/a "a
/b /b
pass:[/a/*:/a] pass:[/a/*:/a]
pass:[/b/*:/b] pass:[/b/*:/b]
pass:[/b/*:/b] pass:[/b/*:/b]
pass:[*asp:/a/*:/b/*] pass:[*asp:/a/*:/b/*]
pass:[/:/a:/b:/a/*:/b/*:*.asp] pass:[/:/a/*:/b/*:*.asp]

30 Jakarta Authorization Final

3.1. What a Jakarta EE Platform’s Deployment Tools Must Do

Permissions and PolicyConfiguration Operations from Example represents the permissions and
PolicyConfiguration operations that would result from the translation of the security-constraint
elements.The names appearing in the second column of the table are those found in the first column of
Qualified URL Pattern Names from Example. As noted previously, any equivalent form of the qualified
names, including their canonical forms, could have been used in the permission constructions.

Table 3-5 Permissions and PolicyConfiguration Operations from Example

Permission

Type

WebResource

WebUserData

WebResource

WebUserData

WebResource

WebUserData

WebResource

WebUserData

WebResource

WebUserData

WebResource

WebResource

WebUserData

WebUserData

WebResource

WebUserData

WebResource

Name

/a/*:/a

/a/*:/a

/bl*:/b

/bf*:/b

/a

/a

/b

/b

asp:/a/:/b/*

asp:/a/:/b/*

/al*:/a

/b/*:/b

/a/*:/a

/bf*:/b

/al*:/a

/al*:/a

/a

Actions

IGET,POST

!GET,POST

!GET,POST

!GET,POST

!GET,POST

!GET,POST

!GET,POST

IGET,POST

null

null

GET

GET,POST

GET:CONFIDENTIAL

GET,POST:CONFIDENTIAL

POST

POST

GET,POST

Policy
Configuration
Add To

excluded

excluded

excluded

excluded

excluded

excluded

excluded

excluded

excluded

excluded

role(R1)

role(R1)

unchecked

unchecked

unchecked

unchecked

unchecked

Jakarta Authorization 31

3.1. What a Jakarta EE Platform’s Deployment Tools Must Do

Permission Name Actions Policy
Type Configuration
Add To
WebUserData /a GET,POST unchecked
WebResource /b GET,POST unchecked
WebUserData /b GET,POST unchecked
WebResource [:/a:/b:/a/*:/b/*:*.asp null unchecked
WebUserData [:/a:/b:/a/*:/b/*:*.asp null unchecked

Regarding the null in the third column of Permissions and PolicyConfiguration Operations from
Example; the canonical form for the set of all HTTP Methods (including all extension methods) is null.

3.1.4. Jakarta Enterprise Beans Policy Context Identifiers

To satisfy this specification, an application server must establish Jakarta Enterprise Beans policy
context identifiers sufficient to differentiate all instances of the deployment of an Jakarta Enterprise
Beans jar on the application server, or on any other application server with which the server may
share the same policy statement repository.

When an application is composed of multiple Jakarta Enterprise Beans jars, no two jars that share at
least one ejb-name value in common may share the same policy context identifiers.

In cases where Jakarta Enterprise Beans may be packaged in war files, the application server must
assign the Jakarta Enterprise Beans to a policy context distinct from that to which any web
components are assigned.

3.1.5. Translating Jakarta Enterprise Beans Deployment Descriptors

A reference to a PolicyConfiguration object must be obtained by calling the getPolicyConfiguration
method on the PolicyConfigurationFactory implementation class of the provider configured into the
container. The policy context identifier used in the call to getPolicyConfiguration must be a String that
satisfies the requirements described in Jakarta Enterprise Beans Policy Context Identifiers. The method-
permission, exclude-list, and security-role-ref elements appearing in the deployment descriptor
must be translated into permissions and added to the PolicyConfiguration object to yield an equivalent
translation as that defined in the following sections and such that every Jakarta Enterprise Beans
method for which the container performs pre-dispatch access decisions is implied by at least one
permission resulting from the translation. Before the translation is performed, all policy statements
must have been removed"" from the policy context associated with the returned PolicyConfiguration.

32 Jakarta Authorization Final

3.1. What a Jakarta EE Platform’s Deployment Tools Must Do

3.1.5.1. Translating Jakarta Enterprise Beans method-permission Elements

For each method element of each method-permission element, an EJBMethodPermission object translated
from the method element must be added to the policy statements of the PolicyConfiguration object. The
name of each such EJBMethodPermission object must be the ejb-name from the corresponding method
element, and the actions must be established by translating the method element into a method
specification according to the methodSpec syntax defined in the documentation of the
EJBMethodPermission class. The actions translation must preserve the degree of specificity with respect
to method-name, method-1intf, and method-params inherent in the method element.

If the method-permission element contains the unchecked element, then the deployment tools must call
the addToUncheckedPolicy method to add the permissions resulting from the translation to the
PolicyConfiguration object. Alternatively, if the method-permission element contains one or more role-
name elements, then the deployment tools must call the addToRole method to add the permissions
resulting from the translation to the corresponding roles of the PolicyConfiguration object. These
addToRole calls must be made for any role-name used in the method-permision which may include the
role-name “**”; which, by default, is mapped to any authenticated user.

3.1.5.2. Translating the Jakarta Enterprise Beans exclude-list

An EJBMethodPermission object must be created for each method element occurring in the exclude-list
element of the deployment descriptor. The name and actions of each EJBMethodPermission must be
established as described in Translating Jakarta Enterprise Beans method-permission Elements

The deployment tools must use the addToExcludedPolicy method to add the EJBMethodPermission objects
resulting from the translation of the exclude-list to the excluded policy statements of the
PolicyConfiguration object.

3.1.5.3. Translating Jakarta Enterprise Beans security-role-ref Elements

For each security-role-ref element appearing in the deployment descriptor, a corresponding
EJBRoleRefPermission must be created. The value of the ejb-name element within the element containing
the security-role-ref element must be used as the name of the EJBRoleRefPermission. The actions used
to construct the permission must be the value of the role-name (that is the reference), appearing in the
security-role-ref. The deployment tools must call the addToRole method on the PolicyConfiguration
object to add a policy statement corresponding to the EJBRoleRefPermission to the role identified in the
role-link appearing in the security-role-ref.

Additional EJBRoleRefPermission objects must be added to the PolicyConfiguration as follows. For each
element in the deployment descriptor for which the Jakarta Enterprise Beans descriptor schema
supports'” inclusion of security-role-ref elements, an EJBRoleRefPermission must be added to each
security-role of the application whose name does not appear as the role-name in a security-role-ref
within the element. If the “any authenticated user” role-name , “**”, does not appear in a security-role-
ref within the element, a EJBRoleRefPermission must also be added for it. The name of each such
EJBRoleRefPermission must be the value of the ejb-name element within the element in which the
security-role-ref elements could otherwise occur. The actions (that is, reference) of each such

Final Jakarta Authorization 33

3.1. What a Jakarta EE Platform’s Deployment Tools Must Do

EJBRoleRefPermission must be the corresponding (non-appearing) role-name . The resulting permissions
must be added" to the corresponding roles by calling the addToRole method on the
PolicyConfiguration object.

3.1.6. Deploying an Application or Module

The application server’s deployment tools must translate the declarative authorization policy
appearing in the application or module deployment descriptor(s) into policy statements within the
Policy providers used by the containers to which the components of the application or module are
being deployed. In Jakarta Servlet containers, the policy statements resulting from the deployment and
initialization of a web module, must represent the effects of any programmatic registration and
security configuration of servlets that occurred during the initialization of the module.

When a module is deployed, its policy context must be linked to all the other policy contexts with
which it must share the same principal-to-role mapping. When an application is deployed, every policy
context of the application must be linked to every other policy context of the application with which it
shares a common Policy provider. Policy contexts are linked"* by calling the linkConfiguration method
on the PolicyConfiguration objects of the provider.

After the translation and linking has occurred (note that they may occur in either order) for a policy
context, the commit method must be called on the corresponding PolicyConfiguration object to place it
in service such that its policy statements will be assimilated by the corresponding Policy providers.
These three operations, translate, link and commit, must be performed for all of the policy contexts of
the application.

Once the translation, linking, and committing has occurred, a call must be made to Policy.refresh on
the Policy provider used by each of the containers to which the application or module is being
deployed. The calls to Policy.refresh must occur before the containers will accept requests for the
deployed resources. If a module corresponding to a policy context may have inter-module,
initialization-time, dependencies that must be satisfied before the translation of the policy context of
the dependent module can be completed"”, the commit of the depended upon modules must occur
before the initialization of the dependent module, and the calls to Policy.refresh described above must
additionally occur after the processing of the depended upon modules and before the initialization of
the dependent module.

The policy context identifiers corresponding to the deployed application or module must be recorded
in the application server so that they can be used by containers to establish the policy context as
required by Setting the Policy Context of the Policy Decision and Enforcement Subcontract, and such
that the Deployer may subsequently remove or modify the corresponding policy contexts as a result of
the undeployment or redeployment of the application.

3.1.7. Undeploying an Application or Module

To ensure that there is not a period during undeployment when the removal of policy statements on
application components renders what were protected components unprotected, the application server
must stop dispatching requests for the application’s components before undeploying an application or

34 Jakarta Authorization Final

3.1. What a Jakarta EE Platform’s Deployment Tools Must Do

module.

To undeploy an application or module, the deployment tools must indicate at all the Policy providers
to which policy contexts of the application or module have been deployed that the policy contexts
associated with the application or module that have been configured in the provider are to be removed
from service. A deployment tool indicates that a policy context is to be removed from service either by
calling getPolicyConfiguration with the identifier of the policy context on the provider’s
PolicyConfigurationFactory or by calling delete on the corresponding PolicyConfiguration object. If the
getPolicyConfiguration method is used, the value true should be passed as the second argument to
cause the corresponding policy statements to be deleted from the context. After the policy contexts are
marked for removal from service, a call must be made to Policy.refresh on all of the Policy providers
from which at least one module of the application or module was marked for removal from service.

3.1.8. Deploying to an existing Policy Configuration

Containers are not required to deploy to an existing policy configuration. Containers that chose to
provide this functionality must satisfy the following requirements.

To associate an application or module with an existing set of linked policy contexts, the identifiers of
the existing policy contexts must be applied by the relevant containers in fulfilling their obligations as
defined in the Policy Decision and Enforcement Subcontract. The policy contexts should be verified for
existence, by calling the inService method of the PolicyConfigurationFactory of the Policy providers of
the relevant containers. The deployment tools must call Policy.refresh on the Policy provider of each
of the relevant containers, and the containers must not perform pre-dispatch decisions or dispatch
requests for the deployed resources until these calls have completed.

In Jakarta Servlet containers, if any programmatic registration and security configuration of servlets
has occurred during the initialization of a web module associated with a pre-exiting policy context, the
corresponding PolicyConfiguration object must be opened, its policy statements must be removed, and
the policy translation of the module must be repeated to include the programmatic effects. The
PolicyConfiguration object must be committed, and an additional call to Policy.refresh must be made
after all such PolicyConfiguration objects are committed.

3.1.9. Redeploying a Module

Containers are not required to implement redeployment functionality. Containers that chose to
provide this functionality must satisfy the following requirements.

To ensure redeployment does not create a situation where the removal of policy statements on
application components renders what were protected components unprotected, the application server
must stop dispatching requests for the application’s components before redeployment begins. The
application server must not resume dispatching requests for the application’s components until after
the calls to Policy.refresh, described in Deploying an Application or Module, have completed.

To redeploy a module, the deployment tools must indicate at all of the Policy providers to which the
module is to be redeployed that the policy context associated with the module is to be removed from

Final Jakarta Authorization 35

3.2. What the Provider Must Do

service. If the module is to be redeployed to the same policy context at a provider, all policy statements
and linkages must be removed from the policy context at the provider. After the policy contexts have
been marked for removal from service and emptied of policy statements and linkages (as necessary),
the deployment tools must proceed as described in Deploying an Application or Module.

3.2. What the Provider Must Do

The provider must include an implementation of the
jakarta.security.jacc.PolicyConfigurationFactory class along with a matched implementation of a
class that implements the jakarta.security.jacc.PolicyConfiguration interface. In addition to
providing a PolicyConfiguration interface for integration with the application server’s deployment
tools, the provider must also include a management interface for policy administrators to use to grant
the collections of permissions that comprise roles, to principals. This interface need not be
standardized.

The provider must ensure that all of the permissions added to a role in a policy context are granted to
any principal mapped to the role by the policy administrator. For the any “authenticated user role”,
«“»and unless an application specific mapping has been established for this role, the provider must
ensure that all permissions added to the role are granted to any authenticated user. The provider must
ensure that the same principal-to-role mappings are applied to all linked policy contexts.

The provider must ensure that excluded policy statements take precedence over overlapping
unchecked policy statements, and that both excluded and unchecked policy statements take
precedence over overlapping role based policy statements.

This specification does not prescribe the policy language or the methods used within providers to
implement the policy and role requirements described above.

3.3. Permission to Configure Policy

The getPolicyConfigurationFactory, and inService methods of the abstract factory class,
jakarta.security.jacc.PolicyConfigurationFactory, must throw a SecurityException when called by an
AccessControlContext that has not been granted the “setPolicy” SecurityPermission.

The getPolicyConfiguration method of all implementations of the PolicyConfigurationFactory abstract
class must throw a SecurityException when called by an AccessControlContext that has not been
granted the “setPolicy” SecurityPermission.

All of the public methods of all of the concrete implementations of the PolicyConfiguration interface
must throw a SecurityException when called by an AccessControlContext that has not been granted the
“setPolicy” SecurityPermission.

In cases where a required permission is not held by a caller, the implementation must return without
changing the state of the policy statement repository.

The containers of an application server must be granted the “getPolicy” SecurityPermission and the

36 Jakarta Authorization Final

3.3. Permission to Configure Policy

“setPolicy” SecurityPermission.

[1] For some permission types, such as the EJBMethodPermission, it will generally not be possible to use the implies
method of the PermissionCollection to compute collection equivalence (because the implies method is unable to
determine when a collection contains all the permissions implied by a wild carded form of the permission).

[2] An exception to this rule is described in Jakarta Enterprise Beans Policy Context Identifiers.

[3] See Jakarta Enterprise Beans Policy Context Identifiers for further clarification.

[4] This can be achieved by passing true as the second parameter in the call to getPolicyConfiguration, or by calling
delete on the PolicyConfiguration before calling getPolicyConfiguration to transition it to the open state.

[5] The WebUserDataPermission objects allow a container to determine when to reject a request before redirection if it
would ultimately be rejected as the result of an excluding auth-constraint

[6] The value null should be used as the actions value in the construction of a WebUserDataPermission when both the
HTTP method specification, and the representation of the acceptable connection type may be represented by null. If
only one of the action components may be represented by null the other should be used as the actions value.

[7] The set of all possible HTTP methods is non-enumerable and contains the traditional HTTP methods (i.e., DELETE,
GET, HEAD, OPTIONS, POST, PUT, TRACE) and any method conforming to the “extension-method” syntax defined in IETF
RFC 2616 “Hypertext Transfer Protocol —HTTP/1.1”. A null or the emptyString HTTP method specification is used to this
set.

[8] Qualifying patterns implied by another qualifying pattern may be dropped because the use of the reduced list to
qualify a pattern will yield a URLPatternSpec “equal” to the URLPatternSpec produced by qualifying the pattern with the
full list (for example, /a/*:/ a/b:/a/b/*:/a/b/c/* is equal to /a/*:/a/b/*)

[9] See Colons Within path-segment of Request URI for details.

[10] These additional WebRoleRefPermission objects support the use of isUserInRole from unmapped (to a Servlet) JSP
components.

[11] This can be achieved by passing true as the second parameter in the call to getPolicyConfiguration, or by calling
delete on the PolicyConfiguration before calling getPolicyConfiguration to transition it to the open state.

[12] Jakarta Enterprise Beans supports inclusion of security-role-ref elements in entity and session elements. Future
versions could support inclusion in message-driven.

[13] For example, if an application declares roles {R1, R2, R3} and defines a session Jakarta Enterprise Bean named
“shoppingCart” that contains one security-role-ref element with role-name R1, then an additional EJBRoleRefPermission
must be added to each of the roles R2 and R3. The name of both permissions must be “shoppingCart”, and the actions
value of the permission added to role R2 must be “R2”, and the actions value of the permission added to role R3 must be
“R3”.

[14] Policy context linking is transitive and symmetric, and this specification should not be interpreted as requiring that
linkConfiguration be called on every combination of policy contexts that must share the same principal-to-role
mapping, or that all contexts must be linked before any can be committed.

[15] Such as having a Jakarta Servlet ServletContextListener configured that could programmatically register a servlet
and configure its security constraints and that could also perform a local invocation of a Jakarta Enterprise Bean in
another module of the application.

Final Jakarta Authorization 37

4.1. Policy Enforcement by Servlet Containers

Chapter 4. Policy Decision and Enforcement
Subcontract

The Policy Decision and Enforcement Subcontract defines the interactions between container policy
enforcement points and the providers that implement the policy decisions required by Jakarta EE
containers.

4.1. Policy Enforcement by Servlet Containers

Jakarta Servlet containers must employ the methods defined in the following subsections to enforce
the authorization policies established for web resources.

4.1.1. Permission Names for Transport and Pre-Dispatch Decisions

The name of the permission checked in a transport or pre-dispatch decision must be the unqualified
request URI minus the context path. All colon characters occurring within the name must be
represented using escaped encoding"® For the special case where this transformation of the request
URI yields the URLPattern "/", the empty string URLPattern, "", must be used as the permission name.

For the special case where the empty string must be substituted for the "/" pattern in the permission
evaluation, all target related processing (including servlet mapping, filter mapping, and form based
login processing) must be performed using the original pattern, "/".

4.1.2. Evaluation of Transport Guarantees

The Jakarta Servlet container must obtain a WebUserDataPermission object with name obtained from the
request URI as defined in Permission Names for Transport and Pre-Dispatch Decisions. The actions of
the obtained permission must be composed of the HTTP method of the request and a protection value
describing the transport layer protection of the connection on which the request arrived. The
protection value must be as follows:

* If the request arrived on a connection deemed by the container to be protected for confidentiality,
a protection value of “:CONFIDENTIAL” must be used.

* If the request arrived on a connection deemed by the container to be protected for integrity (but
not confidentiality), a protection value of “:INTEGRAL” must be used.

« If the request arrived on a connection deemed by the container to be unprotected, the actions used
in the permission construction must contain only the HTTP method of the request.

The Jakarta Servlet container must use one of the methods described in Checking
AccessControlContext Independent Grants to test if access to the resource using the method and
connection type encapsulated in the WebUserDataPermission is permitted. If a SecurityException is
thrown in the permission determination, it must be caught, and the result of the determination must
be that access to the resource using the method and connection type is not permitted. If access is not

38 Jakarta Authorization Final

4.2. Provider Support for Servlet Policy Enforcement

permitted, the request must be redirected as defined by the Jakarta Servlet Specification. If access is
permitted, the request must be subjected to a pre-dispatch decision.

4.1.3. Pre-dispatch Decision

The Jakarta Servlet container must obtain a WebResourcePermission object with name obtained from the
request URI as defined in Permission Names for Transport and Pre-Dispatch Decisions. The actions of
the obtained permission must be the HTTP method of the request. The Jakarta Servlet container must
use one of the methods described in Checking the Caller for a Permission to test if the
WebResourcePermission has been granted to the caller. If a SecurityException is thrown in the permission
determination, it must be caught, and the result of the determination must be that the permission is
not granted to the caller. The Jakarta Servlet container may only dispatch the request to the web
resource if the WebResourcePermission is determined to be granted to the caller. Otherwise the request
must be rejected with the appropriate HTTP error message as defined by the Jakarta Servlet
Specification.

Before it dispatches a call to a web resource, the container must associate with the call thread an
AccessControlContext containing the principals of (only) the target component’s runAs identity (as
defined in Component runAs Identity).

4.1.4. Application Embedded Privilege Test

When a call is made from a web resource to isUserInRole(String roleName) the implementation of this
method must obtain a WebRoleRefPermission object with name corresponding to the servlet-name of the
calling web resource and with actions equal to the roleName used in the call. For the special case
where the call to isUserInRole is made from a web resource that is not mapped to a Servlet (i.e. by a
servlet-mapping), the name of the WebRoleRefPermission must be the empty string. In either case, the
implementation of the isUserInRole method must then use one of the methods described in Checking
the Caller for a Permission to determine if the WebRoleRefPermission has been granted to the caller. If a
SecurityException is thrown in the permission determination, it must be caught, and the result of the
determination must be that the permission is not granted to the caller. If it is determined that the
WebRoleRefPermission has been granted to the caller, isUserInRole must return true. Otherwise the
return value must be false.

4.2. Provider Support for Servlet Policy Enforcement

In support of the policy enforcement done by servlet containers, providers must implement the policy
decision functionality defined in the following subsections.

4.2.1. Servlet Policy Decision Semantics

A Policy provider must use the combined policy statements of the default policy context (as defined in
Default Policy Context) and of the policy context identified by calling PolicyContext.getContextID to
determine if they imply the permission being checked. If one or more excluded policy statements
imply the checked permission, the evaluation may terminate and the checked permission must be

Final Jakarta Authorization 39

4.2. Provider Support for Servlet Policy Enforcement

determined not to be granted. Otherwise, if one or more unchecked policy statements imply the
checked permission, the checked permission must be determined to be granted independent of
AccessControlContext. If the status of the checked permission is not resolved by the excluded and
unchecked evaluations, it must be determined if a permission that implies the checked permission has
been granted to the AccessControlContext being tested for the permission. The checked permission may
only be determined to be granted if a permission that implies the checked permission has been granted
to the AccessControlContext. Otherwise the permission must be determined not to be granted. The
policy decision semantics are dependent on permission specific rules for determining if the
permissions in policy statements imply the permission being checked.

The WebResourcePermission, WebUserDataPermission, and WebRoleRefPermission specific rules used to
determine if the permissions in policy statements imply a checked permission are defined in the next
sections.

4.2.1.1. Matching Qualified URL Pattern Names

Qualified URL Patterns names were described in a subsection of Translating security-constraint
Elements. The WebResourcePermission and WebUserDataPermission classes use the term URLPatternSpec
to describe the syntax of qualified URL pattern names. The URLPatternSpec syntax is defined as
follows:

URLPatternlList ::= URLPattern | URLPatternlList colon URLPattern
URLPatternSpec ::= URLPattern | URLPattern colon URLPatternList
name ::= URLPatternSpec

Given this syntax, A reference URLPatternSpec matches an argument URLPatternSpec if all of the
following are true.

* The first URLPattern in the argument URLPatternSpec is matched by the first URLPattern in the
reference URLPatternSpec.

* The first URLPattern in the argument URLPatternSpec is NOT matched by any URLPattern in the
URLPatternList of the reference URLPatternSpec.

o If the first URLPattern in the argument URLPatternSpec matches the first URLPattern in the
reference URLPatternSpec, then every URLPattern in the URLPatternList of the reference
URLPatternSpec must be matched by a URLPattern in the URLPatternList of the argument
URLPatternSpec.

The comparisons described above are case sensitive, and all matching is according to the rules defined
in Servlet URL-Pattern Matching Rules.

4.2.1.2. Matching HTTP Method Specifications

The WebResourcePermission and WebUserDataPermission classes use the term HTTPMethodSpec to
describe the syntax of the HTTP method component of their actions values. The HTTPMethodSpec

40 Jakarta Authorization Final

4.2. Provider Support for Servlet Policy Enforcement

syntax is defined as follows:

HTTPMethodSpec ::= null | emptyString |
HTTPMethodExceptionList | HTTPMethodlList

Given this syntax, a reference HTTPMethodSpec matches an argument HTTPMethodSpec if all of the
HTTP methods represented by the actions of the argument specification are included in the method
subset represented by the actions of the reference specification.

A null or emptyString HTTPMethodSpec represents the entire set of HTTP methods, and as such,
matches any argument HTTPMethodSpec. An HTTPMethodExceptionList"” matches any subset that
does not include a method named in the exception list. A reference HTTPMethodList matches an
argument HTTPMethodList if the methods named in the argument list are all named in the reference
list. An HTTPMethodList never matches an argument HTTPMethodExceptionList. Neither an
HTTPMethodList or an HTTPMethodExceptionList matches a null or emptyString HTTPMethodSpec.

4.2.1.3. WebResourcePermission Matching Rules

A reference WebResourcePermission implies an argument permission if all of the following are true.

* The argument permission is an instanceof WebResourcePermission.

* The name of the argument permission is matched by the name of the reference permission
according to the rules defined in Matching Qualified URL Pattern Names.

* The HTTP methods represented by the actions of the argument permission are a subset of the HTTP
methods represented by the actions of the reference permission as defined in Matching HTTP
Method Specifications.

The comparisons described above are case sensitive.

4.2.1.4. WebRoleRefPermission Matching Rules

A reference WebRoleRefPermission implies an argument permission if all of the following are true.

* The argument permission is an instanceof WebRoleRefPermission.
* The name of the argument permission is equivalent to the name of the reference permission.

* The actions (i.e role reference) of the argument permission is equivalent to the actions (i.e role
reference) of the reference permission.

The comparisons described above are case sensitive.

4.2.1.5. WebUserDataPermission Matching Rules

A reference WebUserDataPermission implies an argument permission if all of the following are true.

* The argument permission is an instanceof WebUserDataPermission.

Final Jakarta Authorization 41

4.3. Policy Enforcement by Jakarta Enterprise Beans Containers

* The name of the argument permission is matched by the name of the reference permission
according to the rules defined in Matching Qualified URL Pattern Names.

* The HTTP methods represented by the actions of the argument permission are a subset of the HTTP
methods represented by the actions of the reference permission as defined in Matching HTTP
Method Specifications.

* The transportType in the actions of the reference permission either corresponds to the value
"NONE", or equals the transportType in the actions of the argument permission.

The comparisons described above are case sensitive.

4.3. Policy Enforcement by Jakarta Enterprise Beans
Containers

Jakarta Enterprise Beans containers must employ the methods defined in the following subsections to
enforce the authorization policies established for Jakarta Enterprise Beans resources.

4.3.1. Jakarta Enterprise Beans Pre-dispatch Decision

The Jakarta Enterprise Beans container must obtain an EJBMethodPermission object with name
corresponding to the ejb-name of the target resource and with actions that completely specify the
about-to-be-called method of the akarta Enterprise Bean by identifying the method interface, method
name, and method signature as defined for a methodSpec in the documentation of the
EJBMethodPermission class.

The Jakarta Enterprise Beans container must use one of the methods described in Checking the Caller
for a Permission to determine if the EJBMethodPermission has been granted to the caller. If a
SecurityException is thrown in the permission determination, it must be caught, and the result of the
determination must be that the permission is not granted to the caller. The Jakarta Enterprise Beans
container may only dispatch the request to the Jakarta Enterprise Bean resource, if the
EJBMethodPermission is determined to be granted to the caller. Otherwise the request must be rejected
with the appropriate exception, as defined by the corresponding Jakarta Enterprise Beans
specification.

Before it dispatches a call to a Jakarta Enterprise Bean, the container must associate with the call
thread an AccessControlContext containing the principals of only the target Jakarta Enterprise Bean’s
runAs identity (as defined in Component runAs Identity).

4.3.2. Jakarta Enterprise Beans Application Embedded Privilege Test

When a Jakarta Enterprise Bean makes a call to isCallerInRole(String roleName) the implementation
of this method must obtain an EJBRoleRefPermission object with name corresponding to the ejb-name of
the Jakarta Enterprise Bean making the call and with actions equal to the roleName used in the call. The
implementation of the isCallerInRole method must then use one of the methods described in Checking
the Caller for a Permission to determine if the EJBRoleRefPermission has been granted to the caller. If a

42 Jakarta Authorization Final

4.4. Provider Support for Jakarta Enterprise Beans Policy Enforcement

SecurityException is thrown in the permission determination, it must be caught, and the result of the
determination must be that the permission is not granted to the caller. If it is determined that the
EJBRoleRefPermission has been granted to the caller, then isCallerInRole must return true. Otherwise
the return value must be false.

4.4. Provider Support for Jakarta Enterprise Beans
Policy Enforcement

In support of the policy enforcement done by Jakarta Enterprise Beans containers, providers must
implement the policy decision functionality defined in the following subsections.

4.4.1. Jakarta Enterprise Beans Policy Decision Semantics

A Policy provider must employ the policy decision semantics described in Servlet Policy Decision
Semantics in the processing of Jakarta Enterprise Beans Policy decisions.

The EJBMethodPermission and EJBRoleRefPermission specific rules used to determine if the permissions
in policy statements imply a checked permission are defined in the following sections.

4.4.1.1. EJBMethodPermission Matching Rules

A reference EJBMethodPermission implies an argument permission, if all of the following are true.

* The argument permission is an instanceof EJBMethodPermission.
* The name of the argument permission is equivalent to the name of the reference permission.

* The methods to which the argument permission applies (as defined in its actions) must be a subset
of the methods to which the reference permission applies (as defined in its actions). This rule is
satisfied if all of the following conditions are met.

o The method name of the reference permission is null, the empty string, or equivalent to the
method name of the argument permission.

o The method interface of the reference permission is null, the empty string, or equivalent to the
method interface of the argument permission.

o The method parameter type list of the reference permission is null, the empty string, or
equivalent to the method parameter type list of the argument permission.

The comparisons described above are case sensitive.

EJBMethodPermission methodSpec Matching Examples demonstrate the properties of
EJBMethodPermission matching by example.

Table 4-6 EJBMethodPermission methodSpec Matching Examples

Final Jakarta Authorization 43

4.5. Component runAs Identity

type methodInterface Spec methodName methodParams Spec implies
Spec checked
permission

checked Home doThis java.lang.String
permission
reference empty string empty string empty string yes
permission
reference Home empty string empty string yes
permission
reference empty string doThis empty string yes
permission
reference empty string empty string java.lang.String yes
permission
reference Remote doThis java.lang.String no
permission
reference Home doNotDoThis java.lang.String no
permission
reference Home doThis java.lang.byte no
permission

4.4.1.2. EJBRoleRefPermission Matching Rules

A reference EJBRoleRefPermission implies an argument permission, if all of the following are true.

* The argument permission is an instanceof EJBRoleRefPermission.
* The name of the argument permission is equivalent to the name of the reference permission.
* The actions (i.e role reference) of the argument permission is equivalent to the actions (i.e role

reference) of the reference permission.

The comparisons described above are case sensitive.

4.5. Component runAs Identity

The identity used by Jakarta Servlet or Jakarta Enterprise Beans components in the operations they
perform is configured by the Deployer. This identity is referred to as the component’s runAs identity. By
default (and wunless otherwise specified in the Jakarta Servlet or Jakarta Enterprise Beans
specifications), components are configured such that they are assigned the identity of their caller (such
as it is) as their runAs identity. Alternatively, a Deployer may choose to assign an environment specific

44 Jakarta Authorization Final

4.6. Setting the Policy Context

identity as a component’s runAs identity. In this case, the container must establish the specified identity
as the component’s runAs identity independent of the identity of the component’s caller.

When a Deployer configures an environment specific component identity based on a deployment
descriptor specification that the component run with an identity mapped to a role, those responsible
for defining the principal-to-role mapping must ensure that the specified identity is mapped to the role.

A container establishes a component’s runAs identity by associating an AccessControlContext with the
component’s thread of execution. The container must ensure that the AccessControlContext includes a
SubjectDomainCombiner; and the container must protect the AccessControlContext associated with a
running component such that, by default, the component is not granted permissions sufficient to
modify the AccessControlContext.

4.6. Setting the Policy Context

A policy context identifier is set on a thread by calling the setContextID method on the PolicyContext
utility class. The value of a thread’s policy context identifier is null until the setContextID method is
called. Before invoking Policy to evaluate a transport guarantee or to perform a pre-dispatch decision,
and before dispatching into a Jakarta Servlet or Jakarta Enterprise Beans component, a container must
ensure that the thread’s policy context identifier identifies the policy context corresponding to the
instance of the module or application for which the operation is being performed.

Containers must be granted the “setPolicy” SecurityPermission independent of policy context identifier
(or in all policy contexts) as they need this permission to set the policy context identifier.

4.6.1. Policy Context Handlers

This specification requires that containers register policy context handlers with the PolicyContext
utility class such that Policy providers can invoke these handlers to obtain additional context to apply
in their access decisions. Policy context handlers are objects that implement the PolicyContextHandler
interface. To satisfy the requirements of this specification, containers are required to provide and
register with the PolicyContext class the policy context handlers described in the following subsections.
All of the required context handlers must19 return the value null when activated outside of the scope
of a container’s processing of a component request. In this context, the scope of a container’s
processing of a component request begins when the container asks policy to perform the
corresponding pre-dispatch access decision and ends either when the access decision returns a failed
authorization or when the dispatched request returns from the component to the container.

Policy providers must not call methods on or modify the objects returned by the context handlers if
these actions will cause the container to fail in its processing of the associated request.

Containers may delay the registration of required context handlers until the first call to
PolicyContext.getHandlerKeys, or for a specific handler, until the required context handler is activated
(assuming getHandlerKeys has not been called). When a required context handler for which registration
has been delayed is invoked, the container may return null, and must complete the registration of the

Final Jakarta Authorization 45

#a1268

4.6. Setting the Policy Context

handler before returning.

A provider that is dependent on a handler, should force registration of the handler in advance of the
provider’s processing of a component request for which the handler is required. This can be
accomplished by invoking the required handler during initialization of the provider.

4.6.1.1. Container Subject Policy Context Handler

All Jakarta Servlet and Jakarta Enterprise Beans containers must register a PolicyContextHandler whose
getContext method returns a javax.security.auth.Subject object when invoked with the key
“javax.security.auth.Subject.container”. When this handler is activated as the result of a policy decision
performed by a container before dispatch into a component, this handler must return a Subject
containing the principals and credentials of the “caller” of the component. When activated from the
scope of a dispatched call, this handler must return a Subject containing the principals and credentials
corresponding to the identity established by the container prior to the activation of the handler. The
identity established by the container will either be the component’s runAs identity or the caller’s
identity (e.g. when a Jakarta Enterprise Beans component calls isCallerInRole). In all cases, if the
identity of the corresponding Subject has not been established or authenticated, this handler must
return the value null.

4.6.1.2. SOAPMessage Policy Context Handler

All Jakarta Enterprise Beans containers must register a PolicyContextHandler whose getContext method
returns a jakarta.xml.soap.SOAPMessage object when invoked with the key
“jakarta.xml.soap.SOAPMessage”. If the request being processed by the container arrived as a SOAP
request at the ServiceEndpoint method interface, the container must return the SOAP message object
when this handler is activated. Otherwise, this handler must return the value null.

4.6.1.3. HttpServletRequest Policy Context Handler

All Jakarta Servlet containers must register a PolicyContextHandler whose getContext method returns a
jakarta.servlet.http.HttpServletRequest object when invoked with the key
“jakarta.servlet.http.HttpServletRequest”. When this handler is activated, the container must return
the HttpServletRequest object corresponding to the component request being processed by the
container.

4.6.1.4. EnterpriseBean Policy Context Handler

All Jakarta Enterprise Beans containers must register a PolicyContextHandler whose getContext method
returns a jakarta.ejb.EnterpriseBean object when invoked with the key “jakarta.ejb.EnterpriseBean”.
When this handler is activated, the container must return the EnterpriseBean object corresponding to
the Jakarta Enterprise Beans component request (as restricted below) being processed by the
container. The EnterpriseBean object must only be returned when this handler is activated within the
scope of a container’s processing of a business method of the Jakarta Enterprise Beans Remote, Local, or
ServiceEndpoint interfaces of the EnterpriseBean object. The value null must be returned if the bean
implementation class does not implement the jakarta.ejb.EnterpriseBean interface.

46 Jakarta Authorization Final

4.7. Checking AccessControlContext Independent Grants

4.6.1.5. Jakarta Enterprise Beans Arguments Policy Context Handler

All EJB containers must register a PolicyContextHandler whose getContext method returns an array of
objects (Object[]) containing the arguments of the Jakarta Enterprise Beans method invocation (in the
same order as they appear in the method signature) when invoked with the key
“jakarta.ejb.arguments”. The context handler must return the value null when called in the context of
a SOAP request that arrived at the ServiceEndpoint method interface. Otherwise, the context handler
must return the array of objects corresponding to the parameters of the Jakarta Enterprise Beans
component invocation. If there are no parameters in the method signature, the context handler must
return an empty array of Object (i.e. Object[0]).

4.7. Checking AccessControlContext Independent Grants

This section describes the techniques used by containers to check permissions for which policy is
defined in terms of the operation defined by the permission and independent of properties of the
invocation context represented in the AccessControlContext. The WebUserDataPermission policy
statements resulting from the translation of Jakarta Servlet user-data-constraint elements are an
example of such permissions. A container must use one of the following techniques to check an
instance of a permission for which policy is defined independent of AccessControlContext.

* The container calls AccessControlContext.checkPermission with the permission being checked as
argument. The call to checkPermission may be made on any AccessControlContext. If checkPermission
throws an AccessControlException, the permission is not granted. Otherwise the permission is
granted.

* The container calls AccessController.checkPermission with the permission being checked. The value
of the current thread’s AccessControlContext is irrelevant in the access determination. If
checkPermission throws an AccessControlException, the checked permission is not granted.
Otherwise the permission is granted.

* The container calls SecurityManager.checkPermission with the permission being checked. If
checkPermission throws an "AccessControlExceptio n, the checked permission is not granted.
Otherwise the permission is granted.

* The container calls Policy.implies with two arguments; the permission being checked and a
ProtectionDomain that need not be constructed with principals. The checked permission is granted if
Policy.implies returns true. Otherwise, the permission is not granted.

* The container calls java.security.Policy.getPermissions with a ProtectionDomain that need not be
constructed with principals. The container must call the implies method on the returned
PermissionCollection using the permission being checked as argument. The checked permission is
granted if the PermissionCollection implies it. Otherwise, the permission is not granted. This
technique is supported but not recommended.

Prior to using any of the techniques described in this section, the container must have established a
policy context identifier as defined in Setting the Policy Context.

Final Jakarta Authorization 47

4.8. Checking the Caller for a Permission

4.8. Checking the Caller for a Permission

A container must determine if the caller has been granted a permission by evaluating the permission
in the context of an AccessControlContext, ProtectionDomain, or Subject containing the principals of
(only) the caller"”, If the caller’s identity has been asserted or vouched for by a trusted authority (other
than the caller), the principals of the authority must not be included in the principals of the caller. A
container must use one of the following techniques to determine if a permission has been granted to
the caller.

* The container calls AccessControlContext.checkPermission with the permission as argument. The
call to checkPermission must be made on an AccessControlContext that contains the principals of the
caller. If checkPermission throws an AccessControlException, the permission is not granted to the
caller. Otherwise the permission is granted.

* The container calls AccessController.checkPermission with the permission as argument. The
AccessControlContext associated with the thread on which the call to checkPermission is made must
contain the principals of the caller. If checkPermission throws an AccessControlException, the
permission is not granted to the caller. Otherwise the permission is granted.

* The container calls SecurityManager.checkPermission with the permission as argument. The
AccessControlContext associated with the thread on which the call to checkPermission is made must
contain the principals of the caller. If checkPermission throws an AccessControlException, the
permission is not granted to the caller. Otherwise the permission is granted.

* container calls Policy.implies with two arguments; the permission being checked and a
ProtectionDomain constructed with the principals of the caller. The boolean result returned by
Policy.implies indicates whether or not the permission has been granted to the caller.

* The container calls java.security.Policy.getPermissions with an argument ProtectionDomain that
was constructed with the principals of the caller. The container must call the implies method on the
returned PermissionCollection using the permission being checked as argument. If the
PermissionCollection implies the permission being tested, the permission has been granted to the
caller. Otherwise it has not. This technique is supported but not recommended"”

Prior to using any of the techniques described in this section, the container must have established a
policy context identifier as defined in Setting the Policy Context.

4.9. Missing Policy Contexts

A Policy provider must return that a tested permission has not been granted if it acquires a non-null
policy context identifier by calling getContextID on the PolicyContext class and the inService method of
the PolicyConfigurationFactory associated with the provider would return false if called with the
policy context identifier.

48 Jakarta Authorization Final

4.10. Default Policy Context

4.10. Default Policy Context

The default policy context contains the policy statements that apply to the JRE independent of the
policy contexts defined as the result of the deployment of modules or applications in containers. The
policy context identifier of the default policy context is the null value. The default policy context is
never linked to another PolicyConfiguration, and as such does not share the principal-to-role mapping
of any other policy context.

A Policy provider must include the policy statements of the default policy context in every access
determination it performs. A Policy provider that either does not call PolicyContext.getContexdID, or
does so and acquires the identifier of the default policy context, must use only the policy statements of
the default policy context to perform its access determination.

4.11. Policy Compatibility Requirements

To be compatible with this contract, every JRE of an application server must perform all of the policy
decisions defined by this contract by interacting with the java.security.Policy instance available in
the JRE via the java.security.Policy.getPolicy method.

If an application server or JRE employs a custom SecurityManager, the necessary reliance on Policy
object may be accomplished by ensuring that the custom SecurityManager relies on the appropriate (as
defined above) Policy object for all of the policy decisions defined by this contract.

4.12. Optimization of Permission Evaluations

Containers may employ the following optimizations (based on reuse) when the result obtained by
repeating the evaluation will not differ from the previous result or when the time since the previous
evaluation is less than the container’s threshold for being effected by policy changes:

* Containers may reuse an authorization result obtained from a previous equivalent permission
evaluation.

* Containers may reuse an authorization result obtained for an unauthenticated caller (i.e. a caller
with no principals) performed as defined in Checking the Caller for a Permission to grant,
independent of caller identity, any permission implied by the unauthenticated result.

This specification does not prescribe how a container determines when a repeated evaluation will
return the same result. That said, one way that containers could make this determination is if they are,
and can determine if they will be, notified of policy changes and if they can establish that their policy
provider does not employ additional context (such as could be acquired by calling a
PolicyContextHandler) in its policy evaluations.

Common practice for containers to receive such notification could be for them to register to the
"java.security.Policy.supportsReuse” key a PolicyContextHandler and for the container to determine if
its provider will notify it of policy changes by making a test call to the provider’s refresh method. Only

Final Jakarta Authorization 49

4.12. Optimization of Permission Evaluations

a provider that is compatible with the optimizations described above (including because it does not
employ additional context in its policy evaluations) may deliver notice of policy changes by activating
this handler when its refresh method is called.

[16] The HttpServletRequest based constructors of WebResourcePermission and WebUserDataPermission must perform the
escaped ecoding. For all other constructors, the encoding must be performed prior to invoking the constructor. See issue
Section B.22, “Colons Within path-segment of Request URL

[17] The syntax and semantics of an HTTPMethodExceptionlList are described in a subsection of Translating security-
constraint Elements

[18] Optimization of Permission Evaluations allows containers to reuse granted results obtained for unauthenticated
callers (i.e. with no principals) to authorize, independent of caller identity, permissions implied by such results.

[19] Not all policy systems support this query. Also, the Policy provider does not see the permission being checked, and
therefore cannot use the permission to identify when to invoke a particular policy context handler.

50 Jakarta Authorization Final

Appendix A: Related Documents

Appendix A: Related Documents

This specification refers to the following documents. The terms used to refer to the documents in this
specification are included in brackets.

S. Bradner, “Key words for use in RFCs to Indicate Requirement Levels,” RFC 2119, Harvard University,
March 1997, [Keywords]

Jakarta EE 9 Specification [Jakarta EE 9 Specification], available at: https://github.com/eclipse-ee4j/
jakartaee-platform

Jakarta Servlet Specification, Version 5.0 [Jakarta Servlet Specification], available at: https:/github.com/
eclipse-eedj/servlet-api

Jakarta Enterprise Beans, Version 4.0 [Jakarta Enterprise Beans Specification], available at:
_https://github.com/eclipse-ee4j/ejb-api

Java™, Standard Edition, Version 8.0 API Specification [Java SE 8 Specification], available at:
https://docs.oracle.com/javase/8/docs/api

Java™ Authentication and Authorization Service (JAAS) [JAAS Specification], available at:
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASRefGuide.html_

Final Jakarta Authorization 51

https://github.com/eclipse-ee4j/jakartaee-platform
https://github.com/eclipse-ee4j/jakartaee-platform
https://github.com/eclipse-ee4j/servlet-api
https://github.com/eclipse-ee4j/servlet-api
https://docs.oracle.com/javase/8/docs/api
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASRefGuide.html_

B.1. Configuration Context and Policy Context Identifiers

Appendix B: Issues

The following sections document the more noteworthy issues that have been discussed by the Expert
Group. These sections are included in the Final Release as they provide insight into the discussions and
decisions which shaped the form of the current specification. All of these issues have been resolved,
and their resolutions are described below and reflected in the document.

B.1. Configuration Context and Policy Context
Identifiers

The PolicyConfiguration interface associates Configuration Context Identifiers with policy statements,
which themselves contain embedded policy context identifiers. There needs to be more explanation of
the purpose and use models of these context identifiers. Configuration context identifiers should only
be assigned by the Provider, to eliminate problems with ambiguity. In the case of createRole, we allow
a configuration context identifier to be passed to createRole so that one configuration context id can be
used for all of the roles in an application/module. It would probably be a good idea to allow the
unchecked and excluded policy collections to also share the same context id. This would reduce the
complexity of the identity mapping, but it would make it harder for the provider to ensure uniqueness
of identifiers. We also want to support deployment and undeployment of modules, within a multi-
module policy configuration context. That is, the modules share the same roles, but their individual
policy statements are differentiated by policy context id within these roles.

Note - Regarding policy context identifiers, it will not be possible to surgically replace the policy
statements corresponding to a module, if modules within a policy configuration context share the
same policy context identifiers.

Resolution - The PolicyConfiguration interface has been redesigned to support both the factory and
finder patterns, and to include an inService method to allow a container to check if a
PolicyConfiguration with a given identifier already exists. The interface also includes the concept of
linked PolicyConfigurations to identify those PolicyConfigurations that must share the same principal-
to-role mappings.

B.2. Configuration of Permissions with Parameters

The PolicyConfiguration interface is used to communicate policy statements to Policy. An element of
these statements is a PermissionCollection that may contain EJBMethodPermission and

52 Jakarta Authorization Final

B.3. Extensibility of the PolicyConfiguration Interface

EJBRoleRefPermission objects that may have been constructed with embedded references to argument
arrays or EntityBean instances. The contract must state whether such permissions may be passed
through the PolicyConfiguration interface, and what the responsibility of the provider shall be should
it occur.

Resolution (Partial) - resolved via the introduction of PolicyContext handlers and the corresponding
removal of the ability to include such information in permission constrictions.

B.3. Extensibility of the PolicyConfiguration Interface

For example, the PolicyConfiguration interface does not include methods that may be used to
interrogate Policy to determine the list of configured policy configuration contexts. We should also
consider whether the interface should be extended to support the configuration of additional forms
(other than unchecked, and excluded) logical policy statements

Resolution (Partial) - with the change to finder semantics, that is getPolicyConfiguration, and the
addition of the inService method to PolicyConfigurationFactory.

B.4. Directory Scoped Extension matching patterns

Resolution - We will not require that they be supported by policy providers, nor will we require that
policy providers reject other than the patterns defined by Jakarta Servlet.

B.5. Evolution of Deployment Policy Language

The Policy Configuration and Policy Decision Subcontracts should be generalized to sustain evolution
in the declarative authorization policy representations used in deployment descriptors. One dimension
of this evolution, would be a change from DTDs to schema.

Resolution - Some generalization in the PolicyConfiguration interface has occurred as a result of the
removal of policy context identifiers from permissions such that any permission objects may be
configured through this interface.

Final Jakarta Authorization 53

B.6. Principals Passed to Providers in Subjects

B.6. Principals Passed to Providers in Subjects

The provider is expected to do principal-to-role mapping, but we have not allowed the provider to
assume that it is working with a companion authentication module. We have also not defined standard
principals for containers to put in the subjects used when they ask Policy to make decisions for them.
So, it is unclear how providers will be able to do Principal-to-Role mapping.

Resolution - We decoupled consideration of this issue from notions of principal selection imposed by
the getCallerPrincipal and getUserPrincipal methods of Jakarta Enterprise Beans and Jakarta Servlet
respectively. We clarified that all principals in an AccessControlContext shall be available to the policy
module for use in principal to role mapping. We added a requirement with respect to asserting or
vouching authorities to ensure that principals corresponding to authorities are not misinterpreted by
providers as principals of the subject (see Checking the Caller for a Permission). Moreover, we
concluded that independent of this contract, a policy module must be familiar with the principals (i.e.
security attributes) assigned to subjects as the result of authentication in its operational environment
and for which it must evaluate policy.

B.7. Clarification of Jakarta Servlet Constraint Matching
Semantics

The definition of the security-constraint matching and enforcement semantics were under specified
in the historical pre-Jakarta Servlet 2.2 and 2.3 specifications. The contract defined in this document
has clarified these semantics; however there was an issue until these clarifications were incorporated
into the pre-Jakarta Servlet.

Resolution - The pre-Jakarta Servlet 2.4 specification and onwards include a more complete
description of the processing of constraints.

B.8. References and Arguments in EJBMethodPermisison

When a container constructs an EJBMethodPermission as part of its policy decision subcontract, it may
include a reference to the Jakarta Enterprise Bean (for an EntityBean) and the arguments to the
method in the constructed permission. Inclusion of this additional context by containers is optional for
performance reasons, yet it has been suggested that the contract provide a way (perhaps via a callback

54 Jakarta Authorization Final

B.9. Permission Spanning in RoleRefPermission

or an exception thrown by the provider) for the container to find out whether or not such information
would be used by the provider.

Resolution - Resolved with introduction of policy context handlers

B.9. Permission Spanning in RoleRefPermission

The EJBRoleRefPermission and WebRoleRefPermission objects support the checking of multiple
“references” in a single permission check. This functionality was motivated by recurring requests to
extend the Jakarta EE “inRole” APIs to allow multiple role references to be evaluated in a single call.
The permission classes noted above, currently support this functionality, at the cost of having to span
permissions in collection implication. The most direct consequence of this spanning is that the new
Permission Collection methods of these Permission classes must not return null, as they must return a
PermissionCollection capable of doing the permission specific spanning.

Resolution - The replacement paradigm has been changed such that it should no longer be possible for
providers to depend on custom implementations of the permission classes defined by this
specification. Accordingly, the complexity introduced by spanning should be attenuated in a
compatible implementation.

B.10. PolicyContext Identifiers are Unknown to
Components

Although not strictly speaking within the scope of this specification, the work of this specification
empowers application components to use the Java SE policy decision interface to perform their own
access control decisions. The permissions defined by this specification must be constructed with an
embedded policy context identifier so that the policy provider can evaluate the permission in the
proper deployment context (i.e policy configuration). As currently defined, the specification does not
provide a component with access to its policy configuration identifiers, and as such a component can
not check any permissions which implement the PolicyContext interface.

Resolution - resolved by moving policy context identifiers out of the permissions, into the
PolicyContext utility class

Final Jakarta Authorization 55

B.11. JAAS Policy Interface expects Providers to be able to getPermissions

B.11. JAAS Policy Interface expects Providers to be able
to getPermissions

Not all Policy providers can, or find it convenient or efficient, to determine all of the permissions
granted to an access control context. The JAAS Policy decision interface, and the use of this interface by
the JAAS SubjectDomainCombiner, impede the integration of Policy Providers that are unable to
enumerate all the permissions that pertain to a subject/protection domain before returning from
Policy.getPermissions().

Resolution - Added recommendation to Provider Configuration Subcontract] that the
javax.security.auth.SubjectDomainCombiner of an application server must combine into the permission
collection returned by javax.security.auth.Policy.getPermisions.

B.12. Implementing Web Security Constraints as
Permission

Specification of the WebResourcePermission and WebUserDataPermission classes with simple, single URL
pattern names is a bad fit for the Java SE Policy decision interface. The implementation of
getPermissions presents a major challenge, as the constraint model would force the implementation to
preserve ungranted constraining permissions in the returned PermissionCollection. It also would not
be possible to implement the enumeration functionality available through the elements method of the
collection. Perhaps more significant, the mapping of security constraints to simple, single URL pattern
names would require a special more complex Policy provider rule combining algorithm, and as such,
would render the default Java Policy provider incompetent to process such permissions. The last point
is in direct conflict with a stated goal of the specification.

Resolution - The translation of web security constraints into Java SE permissions was modified such
that the URL pattern names of the WebResource and WebUserData permissions include a representation of
the URL patterns to which the permission does NOT apply. The permission implies logic was enhanced
to take this change into account. As a result of these changes these permissions may be processed by
the default Java SE Policy module like any other Java SE permission.

B.13. Exception Handling

The first PFD did not define error handling for the methods of the PolicyConfigurationFactory and
PolicyContext classes, or for the PolicyConfiguration and PolicyContextHandler interfaces. Also, no

56 Jakarta Authorization Final

B.14. PolicyConfiguration Commit

provision was provided for implementation classes to pass checked exceptions out through the defined
interfaces and classes.

Resolution - A PolicyContextException class was added to the jakarta.security.jacc package, and the
methods of the classes and interfaces identified above were modified to throw this checked exception
as appropriate.

B.14. PolicyConfiguration Commit

The first PFD did not provide a way for container deployment tools to indicate when the translation of
a policy context was complete and available for assimilation into the associated Policy provider. It had
been assumed that the Policy.refresh method could serve this purpose, until it was discovered that
depending on Policy.refresh for this purpose would preclude parallelism in the deployment of
applications.

Resolution - Added "commit" and “inService” methods to the PolicyConfiguration interface, and
formalized a 3 state (i.e. open, inService, and deleted) life cycle for policy contexts. Required that the
commit method be called on a PolicyConfiguration object after all of its policy statements have been
added, and after it is "linked to any other module with which it must share the same principal-to-role
mapping". Also required that Policy.refresh only assimilate policy contexts in the “inService” state.

B.15. Support for ServiceEndpoint methodInterface

The definition of the EJBMethodPermission class in the first PFD did not support “ServiceEndpoint" as a
valid methodInterface value. The ServiceEndpoint methodInterface was introduced by pre-Jakarta
Enterprise Beans 2.1.

Resolution - Added “ServiceEndpoint” as another possible value for the methodInterface component
of an EJBMethodPermission methodNameSpec.

Final Jakarta Authorization 57

B.16. TypeNames of EJBMethodPermission Array Parameters

B.16. TypeNames of E]JBMethodPermission Array
Parameters

The syntax or syntaxes that may be used to specify array parameters are not defined by the
constructors of the EJBMethodPermission class. The corresponding canonical form of such params as
returned by getActions must also be specified.

Resolution - Added requirement that Array parameters be specified as ComponentType[] as opposed to
in the form returned by Class.getName() (i.e. [LComponentType;).

B.17. Checking Permission on the root of a Web
Application

The URLPattern, "/, cannot be used to check a permission, as it is a synonym for asking if permission to
access the entire application has been granted.

Resolution - Require that the empty string be used as a replacement for "/, during the permission
evaluation. Clarify the WebResourcePermission and WebUserDataPermission definitions to account for the
use of the empty-string as a legitimate URLPattern in such permissions.

B.18. Calling isUserInRole from JSP not mapped to a
Servlet

Checking a WebRoleRefPermission requires the name of a Jakarta Servlet to identify the scope of the
reference to role translation. The name of a scoping servlet has not been established for an unmapped
Jakarta Server Page.

Resolution - For every security role in the web application add a WebRoleRefPermission to the
corresponding role. The name of all such permissions shall be the empty string, and the actions of each
permission shall be the corresponding role name. When checking a WebRoleRefPermission from a Web
resource not mapped to a servlet, use a permission with the empty string as its name and with the
argument to isUserInRole as its actions.

58 Jakarta Authorization Final

B.19. Support for HTTP Extension Methods

B.19. Support for HTTP Extension Methods

Pre-Jakarta Servlet 2.5 added support for HTTP extension methods (as defined in IETF RFC 2616
"Hypertext Transfer Protocol—HTTP/1.1") to security-constraints. Support for extension methods
requires changes to the WebResourcePermission and WebUserDataPermission classes and to the translation
of servlet security-constraints. In general support for HTTP extension methods requires an ability to
represent non-enumerable HTTP method sets in the HTTPMethodSpec components of
WebResourcePermission and WebUserDataPermission actions values.

Resolution - Modified the HTTPMethodSpec constructs of WebResourcePermission and
WebUserDataPermission to support an HTTPMethodExceptionList as a third form of HTTPMethodSpec.
This resolution is known to have the following consequences with respect to backward compatibility:
1) A permission constructed with an HTTPMethodSpec composed of an HTTPMethodList containing all
the "standard"” HTTP methods (i.e., "DELETE,GET,HEAD,OPTIONS,POST,PUT,TRACE) is no longer equal
to and no longer implies a permission constructed with a null, empty array, or emptyString
HTTPMethodSpec. 2) Permissions constructed with a null, empty array, or emptyString
HTTPMethodSpec component to their actions value represent the non-enumerable (due to extension
methods) set of all possible HTTP methods and are NOT equal to or implied by any permission
constructed with an HTTPMethodSpec represented as an HTTPMethodList. 3) It is no longer possible to
use the HTTPMethodList syntax to represent (via enumeration) the complement of a proper subset of
all HTTP methods. As such, an HTTPMethodExceptionList must be used to represent any proper subset
of HTTP methods determined NOT to be constrained during the translation of servlet security-
constraints. 4) The use of exception lists causes the permissions resulting from the translation of a
given security-constraint configuration to differ in their actions values from those that would have
been produced prior to support for HTTP extension methods. Previously translated permissions
remain supported by the changed permission implementations, and (with the exceptions listed in 1
and 2 above) continue to function as they did before the change, as long as extension methods are not
set in checked permissions.

B.20. Welcome File and security-constraint Processing

The relationship between welcome file processing (which can modify the effective request URI) and
security-constraint processing is not defined by the Jakarta Servlet Specification. Since this
specification uses url-patterns derived from request URIS to name target resources in checked
permissions, it is important that welcome file processing and its relationship to security-constraint
processing be clearly specified. Without a clear description of this relationship, unprotected request
URIs which are modified to yield effective request URIs for protected resources may inadvertently be
left unprotected.

Final Jakarta Authorization 59

B.21. Colons Within path-segment of Request URI

Resolution - pending Jakarta Servlet clarification. Recommend that Jakarta Servlet standarize an
HttpServletRequest attribute that can be used to portably obtain the requestURI following welcome file
mapping. Once this attribute is standardized, The HttpServletRequest based constructors of
WebResourcePermission and WebUserDataPermission would use its value to establish the permission name.

B.21. Colons Within path-segment of Request URI

As defined in IETF RFC 2396 "Uniform Resource Identifiers (URI): Generic Syntax", the abs_path
component of a request URI may consist of a sequence of "/" separated path segments, where the
format of each segment is defined as follows:

segment = *pchar *(";" param)
param = *pchar
pchar = UnreserVEd | escaped |II:I| | ll@ll | II&" | ll:ll | II+" | ll$ll | II,"

A colon character occurring within a path-seqment will be syntactically indistinguishable from colons
used by the WebResourcePermission and WebUserDataPermission constructors to demarcate qualifying
patterns.

Resolution - Require that containers use escaped encoding (as defined in RFC 2396) on colon
characters occuring within url-patterns obtained from web.xml. Also require that containers encode
colons occuring within patterns extracted from HttpServletRequest objects and used to create the
names of checked WebResourcePermission and WebUserDataPermission objects. Also require the
HttpServletRequest based constructors of WebResourcePermission and WebUserDataPermission apply
escaped encoding to colons occuring in the names the derived from the request URI. Note that the
colon character is represented as %3A in escaped encoding.

60 Jakarta Authorization Final

C.1. Community Draft Version 0.3 (dated 12/13/2001)

Appendix C: Revision History

C.1. Community Draft Version 0.3 (dated 12/13/2001)

Posted for Community Review 12/17/2001

C.2. Changes in Public Draft Version 0.1

C.2.1. General

JCP version changed to 2.1.

1.

N o e

Specification title changed to J2EETM Authorization Contract for Containers .Added additional
definitions to the terminology section for [a90] and [a92].

Converted the requirements with respect to support for this specification on J2EE 1.3 and 1.4
platforms into assumptions, as any such requirements will ultimately be defined in the J2EE 1.4
Platform Specification.

Added an Assumption and a corresponding requirement with respect to support for Policy
Providers that get all permissions before returning from Policy.

Clarified relationship to Servlet and EJB specification of authorization semantics.
Changed all references to “VM” to “JRE”
Changed all references to “deploy tool” to “deployment tool”

Removed empty brackets from all method names in prose.

C.2.2. Changes to Provider Configuration Subcontract

1.

Rewrote replacability paradigm. New model does not require replacement of permission
implementations.

Described changes to JAAS SubjectDomainCombiner as required when contract is optionally
applied in a J2EE 1.3 context.

C.2.3. Changes to Policy Configuration Subcontract

1.

Changed to be compatible with the changes made (for replacability) to the Provider Configuration
Subcontract.

C.2.4. Changes to Policy Decision Subcontract

1. Added section describing Component runAs Identity to distinguish between runAs identity and

caller identity. More accurately described what a container must do to set a component’s runAs

identity. Added requirement that container prevent component from being able to modify its runAs

Final Jakarta Authorization 61

C.3. Changes in Public Draft Version 0.2

identity.
Added clarification of the matching of an excluded policy statement to a granted permission.
Clarified the policy decision algorithms in Checking AccessControlContext Independent Grants and

Checking the Caller for a Permission to be compatible with the distinction between caller and
runAs identity. Also factored out references to platform versions.

In Checking the Caller for a Permission added requirement that caller identity not include
principals of any trusted (other than the caller).

Added new section, Missing Policy Contexts, to make explicit the behavior of a provider when
asked to check a permission in an unknown policy context.

Rewrote the Policy Compatibility Requirements to indicate that a J2EE 1.4 container that uses a
JAAS policy interface to perform container access decisions would not be compatible with this
specification.

C.2.5. Changes to API

1.

Changed PolicyConfigurationFactory to be an abstract class with a static method that reads a
system property to instantiate a concrete factory implementation class. Also documented the role
of PolicyConfigurationFactory in supporting the PolicyConfiguration with null context identifier.

Specified exceptions to be thrown by methods of PolicyConfiguration interface.

Changed the PolicyConfiguration interface to support the configuration of permissions that are not
instances of PolicyContext into a PolicyConfiguration with null identifier.

C.2.6. Changes to Issues

1.
2.
3.

Resolved issue Principals Passed to Providers in Subjects
Resolved issue Permission Spanning in RoleRefPermission

Added new issue PolicyContext Identifiers are Unknown to Components

C.3. Changes in Public Draft Version 0.2

C.3.1. General

1
2.
3.

Specification title changed to JavaTM Authorization Contract for Containers
Corrected audience to be the public

In terminology: simplified definition of redeploy, corrected definition of provider, by removing
permission implementations, as these will now be part of application server platform.

C.3.2. Changes to Provider Configuration Subcontract

1.

Replaced most references to container with JRE, as a provider integrates per JRE.

62 Jakarta Authorization Final

C.4. Changes in Proposed Final Draft 1 Expert Draft 0.1

C.3.3. Changes to Policy Decision Subcontract

1. In Jakarta Enterprise Beans Policy Decision Semantics, replace references to “subject” with “access
control context”.

2. In Component runAs Identity, softened requirement that container prevent component from
modifying its runAs identity by saying that this must be the default policy.

3. Changes references to “access exception” to AccessControlException.

C.3.4. Changes to Issues

1. Added Introductory paragraph.

2. Added new issue, JAAS Policy Interface expects Providers to be able to getPermissions and its
resolution to ensure that this issue is documented.

C.4. Changes in Proposed Final Draft 1 Expert Draft 0.1

C.4.1. General

1. The license page was changed; most notably the license number.
2. Improper uses of the word “which” were replaced with the word “that”.
3. The word “shall” was replaced with the word “must”.

4. The 2.3 version designation was removed from references to Servlet as the applicable Servlet
release is defined by the EE environment.

C.4.2. Changes to the Preface and Overview

1. The preface was changed to reflect the purpose of the PFD

2. the definition of hostname was modified so that hostnames are no longer required to be used in
servlet policy context identifiers.

3. The requirement that permissions identify the context of their use was changed to require that the
context be set before permission evaluation.

C.4.3. Changes to Provider Configuration Subcontract

1. PolicyContext Class and Context Handlers was inserted to describe the PolicyContext utility class
and the PolicyContextHandler interface.

2. What the Application Server Must Do was modified to include the application server’s
responsibilities relating to the PolicyContext class, and to correct errors in the names of the
abstract policy classes.

Final Jakarta Authorization 63

C.4. Changes in Proposed Final Draft 1 Expert Draft 0.1

C.4.4. Changes to Policy Configuration Subcontract

1.

10.

11.

12.

13.

The examples in What a Jakarta EE Platform’s Deployment Tools Must Do, were modified to reflect
changes to policy context identifiers and their removal from permission names.

The requirement that the names of checked permissions identify the policy context was removed
from Policy Contexts and Policy Context Identifiers

The linkConfiguration method name replaced the incorrect link method name in Linking Policy
Contexts

Servlet Policy Context Identifiers was moved to follow Linking Policy Contexts, and the section was
made less prescriptive with respect to the format of Servlet policy context identifiers. The non-
normative description of the behavior of the Tomcat server was removed.

Translating security-constraint Elements was made a subsection of a new Translating Servlet
Deployment Descriptors and changed to deal with the removal of policy context identifiers from
permission names.

The part of the translation remaining in Translating security-constraint Elements was modified to
yield an OR constraint combination semantic.

The description of the mapping of transport guarantees to unacceptable connection types was
moved to a new "Mapping Transport Guarantee to Connection Type"

Translating Servlet security-role-ref Elements was modified to reflect the removal of policy context
identifiers from permission names.

Translating Jakarta Enterprise Beans method-permission Elements was made a subsection of a new
Translating Jakarta Enterprise Beans Deployment Descriptors and changed to deal with the
removal of policy context identifiers from permission names.

A new section Jakarta Enterprise Beans Policy Context Identifiers, was added to describe the
selection of EJB policy context identifiers.

Translating Jakarta Enterprise Beans method-permission Elements, Translating the Jakarta
Enterprise Beans exclude-list, and Translating Jakarta Enterprise Beans security-role-ref Elements
were all changed to reflect the removal of the policy context identifier from permission names.

Undeploying an Application or Module was modified to reflect the use of the PolicyContext class to
define the policy context.

Permission to Configure Policy was changed to require that “the state of the policy statement
repository” not be changed when the caller does not have the “setPolicy” permission. Also a new
requirement was added that policy be configured to grant containers the “getPolicy” and
“setPolicy” permissions.

C.4.5. Changes to Policy Decision Subcontract

1.
2.

The name was changed to the “Policy Decision and Enforcement Contract”.

Evaluation of Transport Guarantees, Pre-dispatch Decision, and Application Embedded Privilege
Test were changed to reflect the removal of the policy context identifier from permission names.

64 Jakarta Authorization Final

10.

11.

12.

13.

14.

C.4. Changes in Proposed Final Draft 1 Expert Draft 0.1

Section 4.2.1 “Servlet Constraint Matching Semantics”, was replaced by two sections; Servlet Policy
Decision Semantics, and WebResourcePermission Matching Rules.

The latter describes the processing of servlet constraints in a manner related to the three types of
policy statements created via the PolicyConfiguration interface.

Section 4.2.2.1, “Servlet URL-Pattern Matching Rules” was renamed.

Some changes were made to the last two tables of Section 4.2.2.2, “Servlet Constraint Matching
Examples” to accommodate and better illustrate the OR constraint combining semantics.

Section 4.2.3, “WebRoleRefPermission Processing Semantics” was added as the public draft
mistakenly assumed that the Servlet policy model was just about constraints.

Jakarta Enterprise Beans Pre-dispatch Decision and Jakarta Enterprise Beans Application
Embedded Privilege Test were changed to reflect the removal of the policy context identifier from
permission names.

A new Setting the Policy Context was added to describe how a container must set the policy context
before invoking policy. This section also requires that containers be granted the setPolicy
permission in all policy contexts.

A new Policy Context Handlers was added to define the requirements on containers with respect to
policy context handlers. The following new sections were added to define the policy context
handlers required of containers: Container Subject Policy Context Handler, SOAPMessage Policy
Context Handler, HttpServletRequest Policy Context Handler, EnterpriseBean Policy Context
Handler, and Jakarta Enterprise Beans Arguments Policy Context Handler.

The methods for checking policy as defined in Checking AccessControlContext Independent Grants
were reorganized such that it is clear that one of the presented alternatives must be used. Using
AccessController.checkPermission was added as an additional supported alternative, and the
release specific techniques were annotated as such. Also the techniques based on getPermissions
were annotated as not recommended. At the end of the section a requirement was made regarding
the policy context having been set prior to the evaluation.

The same changes as described in the previous change item were applied to Checking the Caller for
a Permission.

Missing Policy Contexts was renamed from “Unconfigured Policy Contexts” and the semantics were
modified to reflect the use of the PolicyContext utility class and the designation of the null policy
context id as the default.

A new Default Policy Context was introduced to describe requirements for chaining policy
evaluation through to the provider of the default policy context.

C.4.6. Changes to API

1.

2.

Replaced the PolicyContext interface with the PolicyContext class. Also changed all of the
permissions such that none of them implement the PolicyContext interface and such that none of
them include a policy context identifier in their names.

Added the PolicyContextHandler interface.

Final Jakarta Authorization 65

C.5. Changes in Proposed Final Draft 1 Expert Draft 0.2

Removed the special purpose, EntityBean and
Argument array constructors from the EJBMethodPermission class.
Removed the special purpose, EntityBean constructor from the EJBRoleRefPermission class.

Modified the actions field of the EJBRoleRefPermission and WebRoleRefPermission classes such
that they contain at most a single role reference. Related to this change, also removed the
newPermissionCollection method implementation from both of these classes.

In the PolicyConfiguration interface, changed the name of the getPolicyContextld method to
getContextID.

Changed the description of the PolicyConfigurationFactory to require implementation classes to
have a public no argument constructor. Also precluded the use of the null value as an argument to
getPolicyConfiguration.

Added a new constructor to the WebResourcePermission and WebUserDataPermission classes to
allow an instance to be constructed from an HttpServletRequest.

C.4.7. Changes to Issues

Changed the introductory material to indicate that all of the issues have been resolved.

The resolution of Issue Configuration of Permissions with Parameters, was changed to reflect the
introduction of policy context handlers.

Issue Evolution of Deployment Policy Language, was partially resolved by removing the
requirement that permissions added via the PolicyConfiguration interface have policy context
identifiers in their names.

Clarification of Jakarta Servlet Constraint Matching Semantics, was resolved with the rewrite of
Section WebResourcePermission Matching Rules, and with the expectation that the Servlet EG will
adopt a change to section SRV.12.8 of the Servlet specification.

Issue References and Arguments in EJBMethodPermisison, was resolved with the introduction of
policy context handlers.

Issue "Integrating Principal-to-Role Mapping with the Deployer Console", was made optional
functionality.

PolicyContext Identifiers are Unknown to Components, was resolved by introducing the
PolicyContext utility class.

C.5. Changes in Proposed Final Draft 1 Expert Draft 0.2

C.5.1. Changes to the Preface and Overview

1.

The restriction that entities be identified by principal was removed from the definition of grant.

66 Jakarta Authorization Final

C.6. Changes in Proposed Final Draft 1 Expert Draft 0.3

C.5.2. Changes to Policy Configuration Subcontract

1. In What a Jakarta EE Platform’s Deployment Tools Must Do, the argument to linkConfiguration was
corrected in the example.

C.5.3. Changes to Policy Decision Subcontract

1. Section 4.2.2.1, “Servlet URL-Pattern Matching Rules” was modified to indicate that pattern length
only is significant among path prefix matches.

2. A description of the content of the tables and how they should be interpreted was added to Section
4.2.2.2, “Servlet Constraint Matching Examples”.

3. Section 4.2.3, “WebRoleRefPermission Processing Semantics” was added as the public draft
mistakenly assumed that the Servlet policy model was just about constraints.

4. Jakarta Enterprise Beans Pre-dispatch Decision and Application Embedded Privilege Test were
changed to reflect the removal of the policy context identifier from permission names.

C.5.4. Changes to History

1. The history section was completed to reflect the changes made in Version 0.1 and 0.2

C.6. Changes in Proposed Final Draft 1 Expert Draft 0.3

C.6.1. Changes to the Preface and Overview

1. The requirement that applicable constraints be selected by best-match was rephrased to define
best-match as it is defined in this spec and the Servlet specification.

C.6.2. Changes to Policy Configuration Subcontract

1. A clarifying sentence was added to the end of What the Provider Must Do to make it clear that this
specification does not prescribe the policy language or the methods used within providers to
implement the defined policy and role requirements.

C.6.3. Changes to Policy Decision Subcontract
1. Section 4.2.3, “WebRoleRefPermission Processing Semantics” was simplified, as much of its content
was not pertinent to the WebRoleRefPermission class.

2. Section 4.4.2, “E]B Permission Matching Rules” was changed to reflect the change to a single role in
the actions of the EJBRoleRefPermission class.

3. In Container Subject Policy Context Handler, the key for the "Subject Policy Context Handler" was
changed to javx.security.auth.Subject.container, and the semantics were modified to return the
caller or runAs identity as appropriate.

Final Jakarta Authorization 67

C.7. Changes in Proposed Final Draft 2 Expert Draft 1

4. In EnterpriseBean Policy Context Handler, the handler return type was corrected.

C.6.4. Changes to API

1. The resolution of the class diagram was improved by changing to a black and white image.

C.7. Changes in Proposed Final Draft 2 Expert Draft 1

C.7.1. General

1. In many places through out the document, replaced used of the phrase “policy configuration” with
“policy context”, and adopted the practice of using PolicyConfiguration to refer to the configuration
interface of a policy context.

C.7.2. Changes to Preface

1. Updated Status section

2. Acknowledged all contributors, including RI and TCK team, and all those who commented on the
specification.

C.7.3. Changes to Overview

1. Added dashed lines to Figure 1-1 to represent PolicyContext interactions.

2. Modified requirement 7, to reflect change is treatment of permissions derived from security-
constraints.

C.7.4. Changes to Provider Configuration Subcontract

1. Added two new sentences to the end of Policy Implementation Class, to make it clear that this
contract is dependent on the standard Java Policy replacement mechanisms, and to make it clear
that containers must support replacability.

2. In What the Application Server Must Do, added all elements of the jacc package to the list of things
that an application server must bundle.

3. In What the Application Server Must Do, the requirement for javax.security.auth.Policy
replacement was softened such that it only applies to 1.3 application servers that choose to support
this specification.

4. In What the Application Server Must Do, reintroduced the requirement that setPolicy not be called
again, to ensure more than temporary Policy replacement.

C.7.5. Changes to Policy Configuration Subcontract

1. In the examples in What a Jakarta EE Platform’s Deployment Tools Must Do, the type of the
declared permission was corrected to agree with constructed type, and “petID” was changed to

68 Jakarta Authorization Final

10.

11.
12.

13.

C.7. Changes in Proposed Final Draft 2 Expert Draft 1

“petContextID” (as a clarification).

In the examples in What a Jakarta EE Platform’s Deployment Tools Must Do, a new stanza was
added to place the policy context in service.

Policy Context Life Cycle, was added.

In Translating Servlet Deployment Descriptors, the call to getPolicyConfiguration was augmented
with a second parameter to ensure that all policy statements are removed from the context.

Translating security-constraint Elements, was rewritten such that the target names of the
WebResourcePermission and WebUserDataPermission policy statements resulting from the
translation are qualified such that they precisely specify the resources to which they apply. The
most significant affect of this change is that it captures the best-matching semantics of the Servlet
constraint model in the permission names, such that these permissions can be tested using the
standard J2SE permission evaluation logic.

Added a new section, "Qualified URL Pattern Names", to describe the rules for composing the target
names used in the construction of the WebResourcePermission and WebUserDataPermission policy
statements resulting from the translation of Servlet security constraints.

The section that had described the “Mapping to Unacceptable Transport Connection Types” was
changed to describe the mapping to “acceptable” connection type. The title of the section was
changed to "Mapping Transport Guarantee to Connection Type". transport-guarantee to Acceptable
Connection Mapping was also changed to reflect the change to “acceptable” connection types, and
the connection type values in the table were modified to agree with the transportTypeSpec syntax
of the WebUserDataPermission class.

Servlet URL-Pattern Matching Rules, was added to support the pattern qualification section, and
relevant sections of the enforcement subcontract.

Example was added

In Translating Jakarta Enterprise Beans Deployment Descriptors, the call to getPolicyConfiguration
was augmented with a second parameter to ensure that all policy statements are removed from the
context.

The last paragraph of Translating the Jakarta Enterprise Beans exclude-list, was clarified.

Deploying an Application or Module, Undeploying an Application or Module, Deploying to an
existing Policy Configuration, and Redeploying a Module, were all changed o reflect the
introduction of the policy context life cycle and the commit method.

The inService method was added to the factory methods called out in the first paragraph of
Permission to Configure Policy, and the SecurityPermission required by these methods was
changed from “getPolicy” to “setPolicy” to correct an inconsistency with the Java implementation.

C.7.6. Changes to Policy Decision and Enforcement Subcontract

1.

2.

Policy Enforcement by Servlet Containers, was modified to require that containers use Policy to
make access control decisions.

Evaluation of Transport Guarantees, was modified to describe how the transport type value is

Final Jakarta Authorization 69

C.7. Changes in Proposed Final Draft 2 Expert Draft 1

10.

11.

12.
13.

14.

15.

16.

obtained for the permission construction, and to reflect the change made to the
WebUserDataPermission class such that it is no longer checked by “determining if a Permission has
been excluded”.

Evaluation of Transport Guarantees, and Pre-dispatch Decision, were changed to reference the
error processing defined in the Servlet specification.

Servlet Policy Decision Semantics, was rewritten to reflect the qualification of the permission
names, and the change to conventional permission evaluation semantics.

WebResourcePermission Matching Rules, WebRoleRefPermission Matching Rules, and
WebUserDataPermission Matching Rules were added to define the permission specific matching
semantics necessary to support the policy decision semantics.

Section 4.2.2.1, “Servlet URL-Pattern Matching Rules”, Section 4.2.2.2, “Servlet Constraint Matching
Examples”, and Section 4.2.3, “WebRoleRefPermission Processing Semantics” were removed from
the document, as the change to qualified pattern names made these sections unnecessary.

Policy Enforcement by Jakarta Enterprise Beans Containers, was modified to require that
containers use Policy to make access control decisions.

Jakarta Enterprise Beans Policy Decision Semantics, was replaced with a simplified section that
references Servlet Policy Decision Semantics.

EJBMethodPermission Matching Rules, and EJBRoleRefPermission Matching Rules, were added to
define the permission specific matching semantics necessary to support the policy decision
semantics. These new sections replaced Section 4.4.2, “EJB Permission Matching Rules”.

The last paragraph of Component runAs Identity, was modified to ensure that the
AccessControlContext includes a SubjectDomainCombiner.

In Policy Context Handlers, changed the last sentence of the paragraph to “...if these actions will
cause the container to fail in its processing of the associated request”.

In Container Subject Policy Context Handler replaced “caller’s identify” with “caller’s identity”.

In SOAPMessage Policy Context Handler, reduce to only E]JB container, and added additional
qualification of the request coming in at the ServiceEndpoint method interface.

In Jakarta Enterprise Beans Arguments Policy Context Handler, clarified that this handler may not
be used if the request came in on the ServiceEndpoint method interface. Also changed the return
type when there are no arguments to an empty array.

Renamed section Checking AccessControlContext Independent Grants and changed it to reflect the
changes made to WebUserDataPermissions such that they are no longer “excluded” permissions.

In <<a745>, changed replaced contains with inService method.

C.7.7. Changes to API

1.

2.

A new class diagram was imported to reflect the changes to the API, most notably the introduction
of the PolicyContextException class.

The javadocs were regenerated to conceal implementation specific private instance variables.

70 Jakarta Authorization Final

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

C.7. Changes in Proposed Final Draft 2 Expert Draft 1

Added “ServiceEndpoint” to the list of alternative MethodInterface identifiers for
EJBMethodPermissions.

More completely specified EJBMethodPermission matching of methodNameSpec in implies

Added policy context life cycle, including description, and state table to PolicyConfiguration
interface.

Added new methods “commit” and inService to the PolicyConfiguration interface.

Changed all the method signatures of the PolicyConfiguration interface to throw
PolicyContextException, and described the other exceptions that implementations are required to
throw.

Changed the documentation of getPolicyConfigurationFactory to properly identify the system
property.

Added a new parameter to the getPolicyConfiguration method of PolicyConfigurationFactory to
indicate whether or not all the policy statements should be removed from the policy context.

Renamed contains of PolicyConfigurationFactory class to inService.

Changed all the method signatures of the PolicyConfigurationFactory class to throw
PolicyContextException, and described the other exceptions that implementations are required to
throw.

Changed authorization requirement of the PolicyContext class to allow containers to be responsible
for deciding how callers of this method must be authorized.

Changed the getContext and registerHandler methods of the PolicyContext class to declare that they
throw PolicyContextException., and described the other exceptions that these methods are
required to throw.

Changed the format of the name used to construct a WebResourcePermission to contain a
URLPatternSpec, and described the restrictions on the patterns appearing in the URLPatternList.

Modified the specification of the implies and equals methods of WebResourcePermission to account
for the URLPatternSpec.

Changed the format of the name used to construct a WebUserDataPermission to contain a
URLPatternSpec, and described the restrictions on the patterns appearing in the URLPatternList.

Changed BNF for “actions” of WebUserDataPermission such that a separating “:” is not required if a
transportType is not explicitly specified.

Replaced transportTypeList in actions of WebuserdataPermission with a single transportType
value.

Modified the specification of the implies and equals methods of WebUserDataPermission to
account for the URLPatternSpec.

Comparable Interface was removed from WebResourcePermission and WebUserDataPermission.

description of the second clause of the “servlet matching rules” of WebResourcePermission.implies
and WebUserDataPermission.implies were changed to properly reflect the servlet matching
semantics; where for example, /a/b/* must match /a/b in addition to /a/b/z.

Final Jakarta Authorization 71

C.8.

22.

23.

Changes in Proposed Final Draft 2 Expert Draft 2

In WebUserDataPermission constructor removed extra “and” in “.by calling and
HttpServletRequest.isSecure()”.

In description of PolicyContextHandler.getContext, removed extra “the” from “and obtain from it
the the”.

C.7.8. Changes to References

1.

Upgraded document version references for [J2EE specification], [J2SE specification], [E]JB
specification], and [Servlet specification] to 1.4, 1.4.0, 2.1, and 2.4 respectively. Also updated URL for
[J2EE specification].

C.7.9. Changes to Issues

1.
2.
3.
4.

C.

Added new issue, Implementing Web Security Constraints as Permission.
Added new issue, Exception Handling.
Added new issue, PolicyConfiguration Commit.

Added new issue, Support for ServiceEndpoint methodInterface.

8. Changes in Proposed Final Draft 2 Expert Draft 2

C.8.1. Changes to Preface

1.

fixed typos, and added additional RI team member to credits.

C.8.2. Changes to Policy Configuration Subcontract

1.

2.

3.

In Servlet URL-Pattern Matching Rules, added additional clause to support universal matching by
«/*”-

In Example, Added comments to security-constraint elements, Also corrected qualified URL Pattern
Names occurring in Qualified URL Pattern Names from Example and Permissions and
PolicyConfiguration Operations from Example.

In Deploying an Application or Module, changed the text of the footnote to properly reflect that
policy contexts are linked by object not by identifier.

C.8.3. Changes to Policy Decision and Enforcement Subcontract

1.

2.

72

In Evaluation of Transport Guarantees, and Pre-dispatch Decision, changed the corresponding
construction descriptions to be less prescriptive such that calling any constructor that results in the
proper name being established would be allowed. Also indicated that the resulting url-pattern is to
be “unqualified”.

Modified Servlet Policy Decision Semantics, to require that the policy statements of the default
policy context be included in the access decisions and to require that the subject based policy

Jakarta Authorization Final

C.9. Changes in Proposed Final Draft 2 Expert Draft 3

statements be tested when the status is unresolved following the excluded and unchecked
evaluations.

3. Added a new Matching Qualified URL Pattern Names to describe URLPatternSpec matching, and
replaced the duplicate descriptions of this processing in sections WebResourcePermission Matching
Rules and WebUserDataPermission Matching Rules with a reference to this new section. Also
modified the description of the comparison to support symmetric implication as necessary to
support consistent semantics between the implies and equals methods of these permissions.

4. Added requirement that the comparisons defined by WebResourcePermission Matching Rules,
WebRoleRefPermission Matching Rules, WebUserDataPermission Matching Rules,
EJBMethodPermission Matching Rules, and EJBRoleRefPermission Matching Rules be case sensitive.

5. The word “form” was changed to “from” in first paragraph of Checking AccessControlContext
Independent Grants.

6. In bullets 4 and 5 of Checking AccessControlContext Independent Grants, removed “that was
constructed without static permissions and”.

7. Rewrote Default Policy Context to indicate describe the properties of the default policy context, and
to require that its policy statements be included in every access decision.

C.8.4. Changes to API

1. comments on HttpServletRequest based constructors for WebResourcePermission and
WebUserDataPermission were changed so as not to imply that this is the only constructor that may
be used by a container “prior to checking” a Servlet request.

2. the description of the implies method of WebResourcePermission and WebUserDataPermission was
modified to support the maxim that two permission objects pl and p2 are equivalent iff
pl.implies(p2) and p2.implies(pl). To do so required handling the case where the name of the
argument permission (to implies) is a qualified URLPatternSpec.

3. the description of the servlet matching rules in the implies method of WebResourcePermission and
WebUserDataPermission was corrected to account for universal matching by “/*”.

C.9. Changes in Proposed Final Draft 2 Expert Draft 3

C.9.1. Changes to Policy Configuration Subcontract

1. Added a new first paragraph to Translating security-constraint Elements, to describe the treatment
of patterns overridden by and made irrelevant by the presence of the “/*” pattern in the a web-
resource-collection within the deployment descriptor.

2. Moved the last paragraph in "Qualified URL Pattern Names" to be its first, and added a new
paragraph to its end to describe irrelevant patterns and their treatment by the permission
constructors. Clarified the syntax and description of URLPattern qualification. Indicated that
patterns qualified by other qualifying patterns may be dropped from the list of qualifying patterns
(and described why).

Final Jakarta Authorization 73

C.10. Changes in Proposed Final Draft 2 Expert Draft 4

3. In Example, removed the “/*” pattern from the first web-resource-collection of the first security
constraint, and made the corresponding changes to the table of qualified URL pattern names and
the table of constructed permissions.

4. Added a new column to Qualified URL Pattern Names from Example of Example to represent the
canonical form of the qualified names.The description of Permissions and PolicyConfiguration
Operations from Example was modified to indicate that the names in its second column were
obtained from the first column of Qualified URL Pattern Names from Example, and that any
equivalent form of the qualified names, including their canonical forms, could have been used in
the permission constructions.

C.9.2. Changes to Policy Decision and Enforcement Subcontract

1. In Evaluation of Transport Guarantees, clarified the actions value used for a request that arrives on
an unprotected connection.

C.9.3. Changes to API

1. The URLPatternList descriptions of the WebResourcePermission and WebUserDataPermission
classes; were modified to require that no pattern in a URLPatternList may imply the first pattern of
the URLPatternSpec, as otherwise the URLPatternSpec could not imply itself which would violate
the required equals semantics.

2. The definition of the equals method of the WebResourcePermission and WebUserDataPermission
classes; was modified such that different URLPatternList values are equal if the lists imply the same
patterns.

C.10. Changes in Proposed Final Draft 2 Expert Draft 4

C.10.1. Changes to API

1. The serialization (see Serialized Form on html Javadocs) of the javax.security.jacc permission
classes was described more completely and to remove unnecessary constraints on
implementations.

2. The canonical forms produced by the getActions methods of the WebResourcePermission and
WebUserDataPermission classes were more completely specified.

C.11. Changes in Final Release

C.11.1. Changes to License

1. License was replaced

74 Jakarta Authorization Final

C.11. Changes in Final Release

C.11.2. Changes to the Preface

1
2.

The preface was changed to reflect the purpose of the Final Release.

Additional contributor names were added.

C.11.3. Changes to Overview

1.

Added requirement to support Checking the Caller for a Permission, to ensure that policy providers
not place extra requirements on containers.

C.11.4. Changes to Provider Configuration Subcontract

1.

Added another catch clause to the code sample in What the Application Server Must Do, to support
verification that the loaded object is an instanceof javax.security.Policy.

C.11.5. Changes to Policy Configuration Subcontract

1

10.

11.

Added definition of what it means for two translations to be “equivalent” to What a Jakarta EE
Platform’s Deployment Tools Must Do.

Added clarification to Translating security-constraint Elements to allow for “equivalent”
translations.

Restated the translation description of Translating security-constraint Elements, such that it no
longer prescribes the number of permissions that must be constructed.

Modified the title of the second column of transport-guarantee to Acceptable Connection Mapping.

Restated the translation description of Translating Servlet security-role-ref Elements, such that it no
longer is as prescriptive with respect to the “construction” of permissions, and such that it defines
the name to use for the “additional” permissions.

Fixed a syntax problem, missing "<" in "urlPattern>", in Example.

Changed some of the actions values of Permissions and PolicyConfiguration Operations from
Example, such that they are all in canonical form. Added table footnote to that effect.

Added clarification to Translating Jakarta Enterprise Beans method-permission Elements to allow
for “equivalent” translations.

Restated the translation description of Translating Jakarta Enterprise Beans method-permission
Elements, such that it no longer such that it no longer prescribes the number of permissions that
must be constructed.

Clarified the linking requirements of Deploying an Application or Module and of Redeploying a
Module.

In Undeploying an Application or Module, Deploying to an existing Policy Configuration, and in
Redeploying a Module, changed “must stop accepting” to “must stop dispatching” requests.

Final Jakarta Authorization 75

C.11. Changes in Final Release

C.11.6. Changes to Policy Decision and Enforcement Contract

1.

Added special rule for checking "/" to Evaluation of Transport Guarantees, and Pre-dispatch
Decision.

In Evaluation of Transport Guarantees, Pre-dispatch Decision, Application Embedded Privilege Test,
Jakarta Enterprise Beans Pre-dispatch Decision, and Jakarta Enterprise Beans Application
Embedded Privilege Test, changed the description of how the checked permission is "obtained".

Added clarification of "the scope of a containers processing of a component request” to Policy
Context Handlers.

Added a clarification to Policy Context Handlers, allowing containers to delay the registration of the
required handlers.

In EnterpriseBean Policy Context Handler, restricted the use of this handler to the business method
of the EJB Remote, Local, or ServiceEndpoint interfaces of the EnterpriseBean object.

Added a footnote to Checking the Caller for a Permission, to clarify why calling
Policy.getPermissions is not recommended.

Added Optimization of Permission Evaluations to describe the circumstances under which
containers may caching the results of permission evaluations.

C.11.7. Changes to API

76

Added package description

Changed MethodSpec and constructor descriptions of EJBMethodPermission to provide support for
additional method-intf values.

Clarified the syntax of typeName as used in methodParams of EJBMethodPermission. Also specified
the corresponding affect on the canonical form returned by getActions.

For both WebResourcePermission nd WebUserDataPermission, specified the effect of constructing
these permissions with a null name. Also clarified that the empty string is a supported exact
pattern.

For both WebResourcePermission nd WebUserDataPermission, corrected definition of
HttpServletRequest based constructors such that they obtain the permission name from the
RequestURI minus the contextPath, except for the special case where the name would be "/", in
which case the empty string is used as the permission name.

In WebUserDataPermission, Fixed errors in the BNF for transportType.

Added text to javadoc of JACC permission classes to make it clear that these permissions may
implement newPermissionCollection or inherit its implementation from their superclass.

Modified the definition of the PolicyContext class to allow for implementations that restrict access
to the security sensitive methods of this utility class without necessarily resorting to checking the
setPolicy SecurityPermission.

Jakarta Authorization Final

C.12. Changes in Errata A

C.11.8. Changes to Appendix A: Related Documents

1. Updated the copyright dates.

C.11.9. Changes to Appendix B: Issues

1. Added descriptions of 3 new issues: TypeNames of EJBMethodPermission Array Parameters,
Checking Permission on the root of a Web Application, and Calling isUserInRole from JSP not
mapped to a Servlet.

C.12. Changes in Errata A

C.12.1. Changes to Policy Configuration Subcontract

Page 24: added requirement to Translating Servlet security-role-ref Elements for extra
WebRoleRefPermission objects to be created to support calls to isUserInRole from unmapped JSPs.

C.12.2. Changes to Policy Enforcement Subcontract

1. Page 37: added requirement to Application Embedded Privilege Test to support calling isUserInRole
from an unmapped (to servlet) web resource.

2. page 47: added footnote to Checking the Caller for a Permission to act as a forward reference to
optimization by reuse of unauthenticated results as allowed for by new text added to Optimization
of Permission Evaluations. This optimization allows a container to optimize authorization checks
on unprotected resources.

3. Page 50: added new clarifying text to Optimization of Permission Evaluations to support
performance optimization based on reuse of evaluation results. In addition to reuse of equivalent
evaluations, added text to support reuse of unauthenticated evaluations to authorize evaluations
independent of caller identity. Described a common practice that could be implemented by
containers and providers, and that would cause containers to be notified by providers of policy
changes. By following the suggested practice providers would be able to tell when containers
expect to be notified, for containers to determine if they will be notified, and for containers to
determine if their provider has other properties necessary to sustain reuse.

C.12.3. Changes to API

1. Page 87: Clarified Description of WebRoleRefPermission class.

2. Page 88: Modified description of name parameter of WebRoleRefPermission constructor to describe
use of empty-string name.

C.12.4. Changes to Appendix B: Issues

1. Page 105: removed sentence from description of resolution of issue B19, <<a830[See Calling
isUserInRole from JSP not mapped to a Servlet]", that had indicated that the resolution would NOT

Final Jakarta Authorization 77

C.13. Changes in Errata B

be adopted until the Servlet spec was changed. As a result of this errata, the resolution to issue B19
has been fully integrated.

C.13. Changes in Errata B

C.13.1. Changes to Overview
1. Page 7: modified requirement 9 to allow for and describe the circumstances under which a
container may run without a SecurityManager.

2. Page 8: added Running Without a SecurityManager to describe the changes to this contract that
apply to containers running without a J2SE SecurityManager.

C.14. Change log for Errata C

C.14.1. Changes Made Throughout the Document

1. Changed the "J2EE" and "J2SE" platform names (when not used with a specific version such as J2EE
1.4) to "Java EE" and "Java SE" respectively.

2. Changed improper uses of "affect" to "effect".

C.14.2. Changes to Overview

1. In Assumptions, clarified assumptions 1 and 3 to indicate that contract is intended to apply and be
required by future versions of the Java EE platform.

C.14.3. Changes to Provider Configuration Contract

1. Generalized the J2EE 1.4 version specific requirements such that they also apply to later versions of
the EE platform.

C.14.4. Changes to Policy Configuration Contract

1. Extended the chapter abstract to indicate that the subcontract applies to the configuration of policy
providers from authorization rules defined within Java code using common annotations.

2. In What a Jakarta EE Platform’s Deployment Tools Must Do and 18, described the deployment tool
requirements relating to annotation processing, and the merging of annotations into the
deployment descriptor such that the translation may occur using the deployment descriptor
translation rules.

3. In Servlet Policy Context Identifiers, described why each module of a multi-module web application
must be deployed to a separate policy context.

4. In Translating Servlet security-role-ref Elements, clarified that the set of all roles defined for the
application is used to determine the additional permissions to be constructed.

78 Jakarta Authorization Final

C.15. Change log for Errata D

5. In Jakarta Enterprise Beans Policy Context Identifiers, added rule to ensure that no two EJBs in a
policy context share the same ejb-name. If this rule is not observed the policy statements for the
EJBs would be inappropriately combined.

C.14.5. Changes to Policy Decision and Enforcement Contract

1. Inserted new section Permission Names for Transport and Pre-Dispatch Decisions, to call attention
to the description of how the corresponding permissions names are constructed. This section was
intended to account for the welcome file processing defined by the Servlet specification. The
corresponding clarification of the relationship between welcome file processing and servlet-
constraint processing was not made to the Servlet spec, so, consistent with the assumptions under
which this spec. was defined, clarifying semantics will not be prescribed by this spec. until they are
adopted by the Servlet specification.

2. Revised section Evaluation of Transport Guarantees and section Pre-dispatch Decision, to refer to
the newly inserted section for the definition of their respective permission names.

3. Added new sentence the description of the EnterpriseBean Policy Context Handler to account for
EJB 3.0 Session and Entity beans which are not required to implement the javax.ejb.EnterpriseBean
interface.

C.14.6. Changes to API

1. On page 69, clarified the description of the PolicyConfiguration.commit() method to indicate that it
also throws an UnsupportedOperationException when completing the commit would cause there to
be two or more inService and linked policy contexts with different principal-to-role mappings.

2. Changes to the description of the HttpServletRequest based constructors of the
WebResourcePermission and WebUserDataPermission intended to clarify that welcome file
processing must have been performed before permission construction were deferred pending
clarification of the corresponding functionality in the Servlet Specification

C.15. Change log for Errata D

C.15.1. Changes Made Throughout the Document

1. Changed The specification version from 1.0 to 1.1

C.15.2. Changes to Policy Configuration Contract

1. Amended Translating security-constraint Elements to support the translation of security-
constraints containing extension methods as defined in IETF RFC 2616 "Hypertext Transfer
Protocol —HTTP/1.1".

2. Added a new subsection, "HTTP Method Exception List", to describe the representation of non-
enumerable HTTP method subsets as necessary, for example, to identify all methods not named in a
security-constraint.

Final Jakarta Authorization 79

C.16. Change log for Errata E

3. Modified the actions entries in Table 3-4: "Permissions and PolicyConfiguration Operations from
Example" to conform to the translation changes required to support non-enumerable http
extension methods.

C.15.3. Changes to Policy Decision and Enforcement Contract

1. Inserted new Matching HTTP Method Specifications to describe the HTTPMethodSpec as revised
(by the definition of the HTTPMethodExceptionList) to support HTTP extension methods.

2. Modified WebResourcePermission Matching Rules and WebUserDataPermission Matching Rules to
refer to the new section describing the matching of HTTP method specifications.

C.15.4. Changes to API

1. Modified the WebResourcePermission class to support HTTP extension methods. Extended the
permission’s actions syntax to represent HTTP method exception lists so that non-enumerable
method subsets can be represented in the permission’s actions. Exception lists are used to
represent unconstrained http method subsets.

2. Modified the WebUserDataPermission class to support HTTP extension methods. Extended the
permission’s actions syntax to represent HTTP method exception lists as was done for the
WebResourcePermission class.

C.15.5. Changes to Appendix B: Issues

1. Added new issue Support for HTTP Extension Methods. Resolution describes consequences with
respect to backward compatibility:

2. Added new issue Welcome File and security-constraint Processing to describe the need for
clarification of the relationship between welcome file processing, which can change the effective
request URI, and the url-patterns applied in security-constraint processing.

3. Added new issue Colons Within path-segment of Request URI to document the potential ambiguity
resulting from the use, by the WebResourcePermission and WebUserDataPermission classes, of the
colon character to distinguish qualifying patterns.

C.16. Change log for Errata E

C.16.1. Changes Made Throughout the Document

1. Changed the specification version from 1.1 to 1.2

C.16.2. Changes to Overview

1. In Requirements, clarified requirement 4 to indicate that a policy provider in a Servlet or EJB only
container need only satisfy the requirements corresponding to the supported container.

2. Corrected bullet 3 of Running Without a SecurityManager, by removing prohibition on

80 Jakarta Authorization Final

C.16. Change log for Errata E

AccessControlContext.checkPermission.

3. Added new bullet 4 to Running Without a SecurityManager, to ensure that container sets
AccessControlContext if it uses the AccessController.checkPermission technique.

4. Added new section, Servlet or EJB only containers, to differentiate requirements that must be
satisfied by web containers from those that must be satisfied by E]JB containers.

C.16.3. Changes to Policy Configuration Contract

1. in What a Jakarta EE Platform’s Deployment Tools Must Do, modified the definition of equivalence
to accept as equivalent a translation in which permissions that are implied by excluded
permissions are removed from the role and unchecked permission collections. Limited the
definition of equivalence to apply only to those permission types that are the subject of the
translation. Added footnote to describe why equivalence cannot always be evaluated by
PermissionCollection.implies().

2. in Translating Servlet Deployment Descriptors and in Translating Jakarta Enterprise Beans
Deployment Descriptors, relaxed requirement that the value true be passed as the second
argument to getPolicyConfiguration. Changed text to require that the policy statements be
removed, and added footnotes to describe implementation choices.

3. added a requirement to "Qualified URL Pattern Names", that the translation use escaped encoding
to differentiate colons occurring within the Pattern and QualifyingPattern elements from those
used to construct the QualifyingPatternList.

4. Corrected determination of permission name in Translating Jakarta Enterprise Beans security-role-
ref Elements such that the name is acquired from the ejb-name of the element containing the
security-role-ref.

5. Added a new paragraph in Translating Jakarta Enterprise Beans security-role-ref Elements to
describe the creation of additional EJBRoleRefPermission objects to support optional declaration of
security-role-ref elements (as required by the E]B 3.0 specification)

6. Added a footnote to Translating Jakarta Enterprise Beans security-role-ref Elements to indicate that
the requirements of this section apply to any elements that are permitted by the EJB deployment
descriptor schema to contain security-role-ref elements. This was done in anticipation of support
for inclusion of this element in the message-driven element

C.16.4. Changes to Policy Decision and Enforcement Contract

1. In Permission Names for Transport and Pre-Dispatch Decisions, added the requirement that all
colon characters occurring within the name of the checked permission be represented using
escaped encoding.

2. In Jakarta Enterprise Beans Pre-dispatch Decision corrected requirement that an
RMISecurityException be thrown by requiring that the container throw an exception as required
by the corresponding EJB Specification.

3. Added footnote to Policy Context Handlers to make it explicit that the requirement that a handler

Final Jakarta Authorization 81

C.17. Change log for Errata F

return a null value when called outside of the context of an invocation, need not apply to any
additional handlers registered with the container.

4. Modified the requirements of Policy Context Handlers to allow containers to effectively delay
registrations that would otherwise impede performance. As a result of the change, containers
(especially EJB containers) may return null when, during the processing of a request, an attempt is
made to invoke a required but not yet registered handler.

5. In Checking AccessControlContext Independent Grants corrected return result of
AccessController.checkPermission when exception is not thrown.

6. In Policy Compatibility Requirements. corrected the reference to the
Jjavax.security.auth.Policy.getPolicy method.

C.16.5. Changes to API

1. Added requirement to the HttpServletRequest based constructors of WebResourcePermission and
WebUserDataPermission that the constructors must transform all colon characters occurring in the
name to escaped encoding.

2. Added requirement that all colons occurring within the URLPattern elements of the name and
URLPatternSpec arguments passed to the String based constructors of WebResoucePermission and
WebUserDataPermission must be represented in escaped encoding.

C.16.6. Changes to Issues

1. Added recommended resolution to issue, Welcome File and security-constraint Processing.

2. Added resolution to issue, Colons Within path-segment of Request URI.

C.17. Change log for Errata F

C.17.1. Changes Made Throughout the Document

1. Changed the specification version from 1.2 to 1.3.

C.17.2. Changes to Policy Configuration Subcontract

1. in Translating security-constraint Elements, modified the translation to handle http-method-
omission elements introduced by servlet 3.0.

2. added new "Combining HTTP Methods", to define the combination of http-method and http-
method-omission elements, and to describe the translation of the results to the actions string used
to construct WebResourcePermission and WebUserDataPermission objects.

3. In Example, modified the excluding auth constraint to demonstrate the use of an http-method-
omission list. Also changed <<a416[See Permissions and PolicyConfiguration Operations from
Example] to contain the corresponding translation.

82 Jakarta Authorization Final

4.

C.18. Change log for Errata G (maintenance Release 7)

In Translating Jakarta Enterprise Beans security-role-ref Elements, added an example in a footnote.

C.18. Change log for Errata G (maintenance Release 7)

C.18.1. Changes Made Throughout the Document

1.
2.

Changed the specification version from 1.3 to 1.4.

Changed the JCP version to 2.7

C.18.2. Changes to Policy Configuration Subcontract

1.

In Policy Contexts and Policy Context Identifiers, added a footnote to describe exceptional case of
EJBs bundled within a WAR.

In Servlet Policy Context Identifiers, added paragraph to ensure that E]Bs defined in web modules
are assigned to a separate policy context to ensure that the EJBcontext can be put in service before
the policy context of the web module (which may depend on being able to call the E]JB) . Also added
a footnote with reference to section <<a512[See EJB Policy Context Identifiers] for further
clarification.

Added Programmatic Servlet Registrations, to describe how the servlet policy translation defined
by this subcontract can be applied to the security configuration resulting from the programmatic
registration and security configuration enabled by Servlet 3.0. Also added a description of how an
existing policy context may be retranslated while presrving its links to other policy contexts.

In Jakarta Enterprise Beans Policy Context Identifiers, added paragraph to ensure that E]Bs defined
in web modules are assigned to a separate policy context to ensure that the EJB context can be put
in service before the policy context of the web module (which may depend on being able to call the
EJB).

Clarified Deploying an Application or Module, to allow translations, links, and commits of
individual modules to be interleaved as necessary to support runtime initialization of servlet policy
(as required by Servlet 3.0) while preserving the ability of a ServletContextListener to make a local
call to an EJB in the same application (and without getting an access exception).

In the optional Deploying to an existing Policy Configuration, added an additional paragraph to
describe what must be done to capture the effects of any programmatic registrations and security
configurations that may happen during initialization in a Servlet 3.0 container.

Simplified Redeploying a Module, by having it refer to Deploying an Application or Module, which,
as described above, has been changed to handle Servlet 3.0.

C.18.3. Changes to API

1.

Added clarification to removeUncheckedPolicy, removeExcludedPolicy, and removeRole methods
(of the PolicyConfiguration interface) to indicate that these methods have no effect on the linkages
among policy contexts.

Final Jakarta Authorization 83

C.19. Change log for Errata H (maintenance Release 8)

2.

3.

Added requirement that the removeRole method of the PolicyConfiguration interface remove all
roles when called with a role name of "*" and when no role by that name exists in the
PolicyConfiguration..

Added clarification to the getPolicyConfiguration method of PolicyConfigurationFactory to indicate
that it removes policy statements and linkages when the value of the remove parameter is true.

C.19. Change log for Errata H (maintenance Release 8)

C.19.1. Changes Made Throughout the Document

1.
2.

Changed the specification version from 1.4 to 1.5.

updated the license page

C.19.2. Changes to Policy Configuration Subcontract

1.

In Programmatic Servlet Registrations, changed reference to Servlet 3.0 to "beginning with Servlet
3.0".

In Translating security-constraint Elements, added text to describe the handling of the role-name
"**" in an auth-constraint, and to indicate that the "*" role does not imply the "**" role unless the
application has defined its own role named "**". Amended description of permissions created for
uncovered methods, to require that they be added to either the excluded or unchecked permission
collections, based on the uncovered method semantic in effect for the web-module.

In Translating Servlet security-role-ref Elements, and Translating Jakarta Enterprise Beans

security-role-ref Elements, added description of the handling of the "any authenticated user" role
gk

In Translating Jakarta Enterprise Beans method-permission Elements, amended description of the

translation of role-names in method-permission elements, to include support for the role named
UET 1]

In What the Provider Must Do, added requirement that the provider grant all permissions assigned
to role "**" to any authenticated user.

84 Jakarta Authorization Final

	Jakarta Authorization
	Table of Contents
	Copyright
	Eclipse Foundation Specification License
	Disclaimers

	.1. Preface
	.2. Status of Document
	.3. Audience
	.4. Abstract
	.5. Keywords
	.6. Acknowledgements

	Chapter 1. Overview
	1.1. Introduction
	1.2. Terminology
	1.3. Assumptions
	1.4. Requirements
	1.5. Non Requirements
	1.6. Running Without a SecurityManager
	1.7. Servlet or EJB only containers
	1.8. Servlet Only Containers
	1.9. EJB Only Containers

	Chapter 2. Provider Configuration Subcontract
	2.1. Policy Implementation Class
	2.2. Permission Implementation Classes
	2.3. Policy Configuration Interface
	2.4. PolicyContext Class and Context Handlers
	2.5. What a Provider Must Do
	2.6. Optional Provider Support for JAAS Policy Object
	2.7. What the Application Server Must Do
	2.8. Modifications to the JAAS SubjectDomainCombiner

	Chapter 3. Policy Configuration Subcontract
	3.1. What a Jakarta EE Platform’s Deployment Tools Must Do
	3.1.1. Policy Contexts and Policy Context Identifiers
	3.1.1.1. Policy Context Life Cycle
	3.1.1.2. Linking Policy Contexts

	3.1.2. Servlet Policy Context Identifiers
	3.1.3. Translating Servlet Deployment Descriptors
	3.1.3.1. Programmatic Servlet Registrations
	3.1.3.2. Translating security-constraint Elements
	3.1.3.3. Translating Servlet security-role-ref Elements
	3.1.3.4. Servlet URL-Pattern Matching Rules
	3.1.3.5. Example

	3.1.4. Jakarta Enterprise Beans Policy Context Identifiers
	3.1.5. Translating Jakarta Enterprise Beans Deployment Descriptors
	3.1.5.1. Translating Jakarta Enterprise Beans method-permission Elements
	3.1.5.2. Translating the Jakarta Enterprise Beans exclude-list
	3.1.5.3. Translating Jakarta Enterprise Beans security-role-ref Elements

	3.1.6. Deploying an Application or Module
	3.1.7. Undeploying an Application or Module
	3.1.8. Deploying to an existing Policy Configuration
	3.1.9. Redeploying a Module

	3.2. What the Provider Must Do
	3.3. Permission to Configure Policy

	Chapter 4. Policy Decision and Enforcement Subcontract
	4.1. Policy Enforcement by Servlet Containers
	4.1.1. Permission Names for Transport and Pre-Dispatch Decisions
	4.1.2. Evaluation of Transport Guarantees
	4.1.3. Pre-dispatch Decision
	4.1.4. Application Embedded Privilege Test

	4.2. Provider Support for Servlet Policy Enforcement
	4.2.1. Servlet Policy Decision Semantics
	4.2.1.1. Matching Qualified URL Pattern Names
	4.2.1.2. Matching HTTP Method Specifications
	4.2.1.3. WebResourcePermission Matching Rules
	4.2.1.4. WebRoleRefPermission Matching Rules
	4.2.1.5. WebUserDataPermission Matching Rules

	4.3. Policy Enforcement by Jakarta Enterprise Beans Containers
	4.3.1. Jakarta Enterprise Beans Pre-dispatch Decision
	4.3.2. Jakarta Enterprise Beans Application Embedded Privilege Test

	4.4. Provider Support for Jakarta Enterprise Beans Policy Enforcement
	4.4.1. Jakarta Enterprise Beans Policy Decision Semantics
	4.4.1.1. EJBMethodPermission Matching Rules
	4.4.1.2. EJBRoleRefPermission Matching Rules

	4.5. Component runAs Identity
	4.6. Setting the Policy Context
	4.6.1. Policy Context Handlers
	4.6.1.1. Container Subject Policy Context Handler
	4.6.1.2. SOAPMessage Policy Context Handler
	4.6.1.3. HttpServletRequest Policy Context Handler
	4.6.1.4. EnterpriseBean Policy Context Handler
	4.6.1.5. Jakarta Enterprise Beans Arguments Policy Context Handler

	4.7. Checking AccessControlContext Independent Grants
	4.8. Checking the Caller for a Permission
	4.9. Missing Policy Contexts
	4.10. Default Policy Context
	4.11. Policy Compatibility Requirements
	4.12. Optimization of Permission Evaluations

	Appendix A: Related Documents
	Appendix B: Issues
	B.1. Configuration Context and Policy Context Identifiers
	B.2. Configuration of Permissions with Parameters
	B.3. Extensibility of the PolicyConfiguration Interface
	B.4. Directory Scoped Extension matching patterns
	B.5. Evolution of Deployment Policy Language
	B.6. Principals Passed to Providers in Subjects
	B.7. Clarification of Jakarta Servlet Constraint Matching Semantics
	B.8. References and Arguments in EJBMethodPermisison
	B.9. Permission Spanning in RoleRefPermission
	B.10. PolicyContext Identifiers are Unknown to Components
	B.11. JAAS Policy Interface expects Providers to be able to getPermissions
	B.12. Implementing Web Security Constraints as Permission
	B.13. Exception Handling
	B.14. PolicyConfiguration Commit
	B.15. Support for ServiceEndpoint methodInterface
	B.16. TypeNames of EJBMethodPermission Array Parameters
	B.17. Checking Permission on the root of a Web Application
	B.18. Calling isUserInRole from JSP not mapped to a Servlet
	B.19. Support for HTTP Extension Methods
	B.20. Welcome File and security-constraint Processing
	B.21. Colons Within path-segment of Request URI

	Appendix C: Revision History
	C.1. Community Draft Version 0.3 (dated 12/13/2001)
	C.2. Changes in Public Draft Version 0.1
	C.2.1. General
	C.2.2. Changes to Provider Configuration Subcontract
	C.2.3. Changes to Policy Configuration Subcontract
	C.2.4. Changes to Policy Decision Subcontract
	C.2.5. Changes to API
	C.2.6. Changes to Issues

	C.3. Changes in Public Draft Version 0.2
	C.3.1. General
	C.3.2. Changes to Provider Configuration Subcontract
	C.3.3. Changes to Policy Decision Subcontract
	C.3.4. Changes to Issues

	C.4. Changes in Proposed Final Draft 1 Expert Draft 0.1
	C.4.1. General
	C.4.2. Changes to the Preface and Overview
	C.4.3. Changes to Provider Configuration Subcontract
	C.4.4. Changes to Policy Configuration Subcontract
	C.4.5. Changes to Policy Decision Subcontract
	C.4.6. Changes to API
	C.4.7. Changes to Issues

	C.5. Changes in Proposed Final Draft 1 Expert Draft 0.2
	C.5.1. Changes to the Preface and Overview
	C.5.2. Changes to Policy Configuration Subcontract
	C.5.3. Changes to Policy Decision Subcontract
	C.5.4. Changes to History

	C.6. Changes in Proposed Final Draft 1 Expert Draft 0.3
	C.6.1. Changes to the Preface and Overview
	C.6.2. Changes to Policy Configuration Subcontract
	C.6.3. Changes to Policy Decision Subcontract
	C.6.4. Changes to API

	C.7. Changes in Proposed Final Draft 2 Expert Draft 1
	C.7.1. General
	C.7.2. Changes to Preface
	C.7.3. Changes to Overview
	C.7.4. Changes to Provider Configuration Subcontract
	C.7.5. Changes to Policy Configuration Subcontract
	C.7.6. Changes to Policy Decision and Enforcement Subcontract
	C.7.7. Changes to API
	C.7.8. Changes to References
	C.7.9. Changes to Issues

	C.8. Changes in Proposed Final Draft 2 Expert Draft 2
	C.8.1. Changes to Preface
	C.8.2. Changes to Policy Configuration Subcontract
	C.8.3. Changes to Policy Decision and Enforcement Subcontract
	C.8.4. Changes to API

	C.9. Changes in Proposed Final Draft 2 Expert Draft 3
	C.9.1. Changes to Policy Configuration Subcontract
	C.9.2. Changes to Policy Decision and Enforcement Subcontract
	C.9.3. Changes to API

	C.10. Changes in Proposed Final Draft 2 Expert Draft 4
	C.10.1. Changes to API

	C.11. Changes in Final Release
	C.11.1. Changes to License
	C.11.2. Changes to the Preface
	C.11.3. Changes to Overview
	C.11.4. Changes to Provider Configuration Subcontract
	C.11.5. Changes to Policy Configuration Subcontract
	C.11.6. Changes to Policy Decision and Enforcement Contract
	C.11.7. Changes to API
	C.11.8. Changes to Appendix A: Related Documents
	C.11.9. Changes to Appendix B: Issues

	C.12. Changes in Errata A
	C.12.1. Changes to Policy Configuration Subcontract
	C.12.2. Changes to Policy Enforcement Subcontract
	C.12.3. Changes to API
	C.12.4. Changes to Appendix B: Issues

	C.13. Changes in Errata B
	C.13.1. Changes to Overview

	C.14. Change log for Errata C
	C.14.1. Changes Made Throughout the Document
	C.14.2. Changes to Overview
	C.14.3. Changes to Provider Configuration Contract
	C.14.4. Changes to Policy Configuration Contract
	C.14.5. Changes to Policy Decision and Enforcement Contract
	C.14.6. Changes to API

	C.15. Change log for Errata D
	C.15.1. Changes Made Throughout the Document
	C.15.2. Changes to Policy Configuration Contract
	C.15.3. Changes to Policy Decision and Enforcement Contract
	C.15.4. Changes to API
	C.15.5. Changes to Appendix B: Issues

	C.16. Change log for Errata E
	C.16.1. Changes Made Throughout the Document
	C.16.2. Changes to Overview
	C.16.3. Changes to Policy Configuration Contract
	C.16.4. Changes to Policy Decision and Enforcement Contract
	C.16.5. Changes to API
	C.16.6. Changes to Issues

	C.17. Change log for Errata F
	C.17.1. Changes Made Throughout the Document
	C.17.2. Changes to Policy Configuration Subcontract

	C.18. Change log for Errata G (maintenance Release 7)
	C.18.1. Changes Made Throughout the Document
	C.18.2. Changes to Policy Configuration Subcontract
	C.18.3. Changes to API

	C.19. Change log for Errata H (maintenance Release 8)
	C.19.1. Changes Made Throughout the Document
	C.19.2. Changes to Policy Configuration Subcontract

